Multimedia Video Coding & Architectures (5LSE0), Module 09

Interframe Coding,
MPEG-1/2 Standards: Systems & Video

Peter H.N. de With
(p.h.n.de.with@tue.nl)

MPEG System / Standardization

* MPEG = Motion Picture Experts Group
 - joint standardization of ISO and IEC
 - cooperation with CCITT
* Objective (initial, MPEG-1)
 - definition of a generic standard for coding of digital video and associated audio and data for digital storage media (DSM)
* Objective (MPEG-2)
 - a generic standard for various applications, such as DSM, television broadcasting, and communication
* "Generic: wide range of bit rates, variable resolution and quality, flexible for different services

MPEG System / Applications – (1)

* Purpose of standardization
 - improvement of interoperability
 - common technology in SW and HW
 - lower manufacturing costs
 - convergence in AV applications
* Major applications of MPEG coding
 - BSS Broadcasting Satellite Service (home use)
 - CATV Cable Television Distribution
 - CDAD Cable Digital Audio Distribution
 - DAB Digital Audio Broadcasting
MPEG System / Applications – (2)

* Major applications of MPEG coding (continued)
 – DTDB Digital Terrestrial Television Broadcast
 – EC Electronic Cinema
 – ENG Electronic News Gathering (+ satellite SNG)
 – FSS Fixed Satellite Services (to headends)
 – HTT Home Television Theatre
 – IPC Interpersonal Communications (video phone, conf.)
 – ISM Interactive Storage Media
 – MMM Multi-Media Mailing
 – NDB Networked Database Services (via ATM; etc.)
 – SSM Serial Storage Media (digital VTR, etc.)

MPEG System / Milestones – (1)

* MPEG-1
 – Generic coding of moving pictures and associated audio at a throughput rate of up to 1.5 Mbit/s
 – Input is SIF format
 – Related standard H.261 for audiovisual services at px64 kbit/s
 – Final standard described in ISO-11172
 – Applications areas: CD-i, Video CD, video on PCs

* MPEG-2
 – More wide application area than MPEG-1
 – Extensions for interlaced video signals (TV, VCR, ...)
 – Bit rates up to 100 Mbit/s

MPEG System / Milestones – (2)

* MPEG-2 (continued)
 – final standard described in ISO 11383
 – different descriptions for Audio, Systems
 – draft of standard in November 1993, ratification in progress

* MPEG-4
 – advanced extensions of MPEG-2 with respect to block coding
 – New: model-based or object-oriented coding
 – very low bit rates (e.g. 10 kbit/s ... 100 kbit/s), draft in 1998-99

* MPEG-7
 – for archiving of video sequences
 – database management, standard 2001

MPEG System / Application bit rates

* MPEG-1 bit rates
 – Video decoder rates up to 1.856 Mbit/s (telecomm. channel 31 x 64 kbit/s = 1.984 Mbit/s - 0.128 Mbit/s audio
 – CD-i, Video CD have bit rates of 1.2 Mbit/s (audio about 200 kbit/s)

* MPEG-2 bit rates
 – 4-5 Mbit/s PAL TV quality
 – 6-9 Mbit/s CCIR-601 component video quality (approach studio quality)
 – 19 Mbit/s ATV standard for HDTV in the USA
 – 20-40 Mbit/s for HDTV contribution (studio to studio)
MPEG System / Structured data –(1)

* Structure of MPEG formatted data, applied codecs
* System
 – Multiplexing, packetizing of multiple compressed data streams
 – Synchronization and timing of individual data contributions
* Video coding using hybrid compression
 – Motion compensation in the temporal domain
 – DCT coding in the spatial domain (in the image)
* Audio coding
 – Subband coding at 64, 128, or 192 kbit/s
 – Audio subband masking of inaudible components

MPEG System / Structured data –(2)

* MPEG bit stream Structure
* Division in layers
 – Sequence layer
 – Group Of Pictures (GOP)
 – Picture layer
 – Slice layer
 – Macroblock layer
 – Block layer

MPEG System / Block diagram

* MPEG System block diagram
 – timing information of synchronous video and audio
 – timing of multiple MPEG-formatted data streams

MPEG System / Program stream

* MPEG Program stream
 – Combines one or more Packetized Elementary Streams (PES) into one single multiplexed stream.
 – All streams have a common time base.
* Requirements Program Stream
 – Define multiplex for audio and video streams
 – Control buffering of data (over- and underflow)
 – Enable start of decoding after random access
 – Supply timing information
 – Low overhead rate
MPEG System / Decoder program stream

- Typical Decoder Architecture for MPEG progr. stream
- Operate modes as
 - MULTIPLEX-WIDE: the program itself in the pack layer
 - STREAM-SPECIFIC: one of the elementary streams, in the PES packet layer

MPEG System / Timing system level –(1)

- Timing model
 - End-to-End delay from input of encoder to signal output of decoder is constant
 - All samples are presented only once
- Transport Mechanism
 - System Clock Reference (SCR) is sent to decoder
 - SCR specifies intended time at which SCR is entered in the system decoder

- All time units expressed in terms of common System Time Clock (STC)

MPEG System / Timing system level –(2)

- Accuracy
 - Units of 90 kHz or 11 microsec.
 - Repetition intervals no longer than 700 ms (stable control)
- System remarks
 - For transmission systems: PLLs are required to recover master clock for D/A conversions
 - For recording systems: stand-alone video and audio clock for

MPEG System / System Target decoder

- STD is a model!
 - Describes timing and buffering of decoder exactly
 - Parameterized in MPEG (-1 or -2) fields
 - Encoder responsible that STD can decode all
- Physical decoder
 - Must compensate for its differences with the STD

\[\text{td}(i) = \text{DTS decoding time stamp} \]
\[\text{tp}(i) = \text{PTS presentation time stamp} \]
MPEG System / Synchronization

* Presentation Time Stamps enable synchronization in program stream
 - PTS apply to the presentation time of compression layer constructs (video packet can start anywhere in the bit stream)
 - E-to-E synchronization occurs when
 1. encoder saves time stamps at capture time
 2. PTS propagate with corresponding data to the decoders
 3. decoder uses the PTS to start presentation
* PTS is sent to the decoder
* Accuracy
 - units of 90 kHz
 - SCR+PCR extensions with resolution of 27 MHz (MPEG-2)

MPEG System / Packs (Program Str.)

* Data units of Pack layer (MPEG-1)
 - SCP Start Code Prefix (unique code in AV stream @ system level)
 - ID Pack Identifier
 - SCR System Clock Reference, 33-bit counter, incr. at 90 kHz
 - MUX RATE multiplied bit rate in units 50 Bytes/s, 22-bit field which can vary each pack (VBR support). Often not req. by receiver

MPEG System / Packets

* Data units of Packet layer (MPEG-1)
 - Packet has only data of one input stream, chronological order
 - Total number of packets per pack is not defined
 - ID Stream ID, 110X XXXX Audio (32 available), 1110 XXXX Video (16 available), 1111 XXXX Data stream (16 available)
 - LEN, Distance to start code next packet in Bytes (16 bits)
 - BUFF TS, System Target Decoder buffer size information
 - STREAM DATA, Data for Video, Audio, data decoder, or specific data, (may include PTS and/or decoding time stamps)

MPEG System / MPEG-2 System – (1)

New system specification: based on MPEG-1, but extended

* New requirements
 - Fixed-length data packets option for error-sensitive media
 - Super MUX: program or channel MUX enabling more programs
 - Lower multiplexing complexity
* Solution: TWO STREAMS for different applications
 1. Program Stream
 - Special AV programs,
 - Common time base for error-free environments (variable packets)
 2. Transport stream
 - Multi-program broadcast, program storage, allows editing
 - One or more distinct time bases
 - Fixed-length packets of 188 Bytes for error-sensitive systems
MPEG Sys./ MPEG-2 system diagram

- Distinction between program stream and transport stream
- Packetizing formats optimal for different environments

MPEG System / MPEG-2 Transport Str.

* Transport Stream (TS) definition
 - One or more programs, each containing one or more elementary streams multiplexed together
 - Fixed-length 188 Byte packets, with usually incl. 4-Byte header (Sync, PID, control-bit parameters, etc.)

* Transport stream extraction possibilities (examples)
 - Select data one program, decode, and presentation of results
 - Extract TS packets of one or more programs from multiple TS and construct new TS
 - Extract 1 program and constitute new program stream (DVD record)
 - Convert program stream to TS, transport it over error-sensitive media, and recover valid program stream (DVD+ DVB broadcast)

* Conclusion: important for broadcasting applications

Intraframe Coding

* Encode frame-by-frame, disregarding all temporal information
 - Example: Motion-JPEG (AVI compressed)

- Easy bit allocation per frame
- Random access is possible
- Robust to transmission/decompression problems
- But … Moderate compression capabilities
Interframe Coding of temporal differences

- Encode differences between frames (temporal DPCM); consider motion of parts of the frames

Complexity is between intra-frame and 3-D coding
- Can always fall back onto intra-frame coding
- Moderate delay

Principles of Hybrid Coding – (1)

- Basic idea
 - Predict current frame on basis of (coded) previous one
 - Transmit only quantized prediction differences
 - Usually done on 8x8 blocks

Prediction difference:
\[\Delta x(q,t) = x(q,t) - \bar{x}(q,t-1) \]

Temporal Prediction Gain

- Like normal DPCM, assess the effect of interframe prediction by the prediction gain

\[G_p = \frac{\text{variance of the original frame}}{\text{variance of the prediction difference}} \]

<table>
<thead>
<tr>
<th>Frame number</th>
<th>(\sigma_x^2)</th>
<th>(\sigma_{\Delta x}^2)</th>
<th>(G_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1888.2</td>
<td>282.0</td>
<td>6.7</td>
</tr>
<tr>
<td>2</td>
<td>1885.9</td>
<td>225.7</td>
<td>8.4</td>
</tr>
<tr>
<td>3</td>
<td>1873.6</td>
<td>265.7</td>
<td>7.1</td>
</tr>
<tr>
<td>4</td>
<td>1884.6</td>
<td>329.1</td>
<td>5.7</td>
</tr>
<tr>
<td>5</td>
<td>1889.4</td>
<td>342.6</td>
<td>5.5</td>
</tr>
<tr>
<td>6</td>
<td>1901.1</td>
<td>368.9</td>
<td>5.2</td>
</tr>
</tbody>
</table>

around 1.2 - 1.5 bit
Principles of Hybrid Coding – (2)

* Complete temp. DPCM system (1-st ord. predictor, \(h_1 = 1 \))
* Quantized prediction difference: \(\Delta x^*(q, t) = Q[\Delta x(q, t)] \)
* Reconstruction: \(\hat{x}(q, t) = \Delta x^*(q, t) + \hat{x}(q, t - 1) \)

Principles of Hybrid Coding – (3)

* Prediction difference locally still contains a lot of spatial correlation and lots of zeroes: Decorrelate via 8x8 DCT
* Quantization in DCT domain \(\Delta X^*(q, t) = Q[\Delta X(q, t)] \)
* Reconstruction \(\hat{x}(q, t) = \text{DCT}^{-1}(\Delta X^*(q, t)) + \hat{x}(q, t - 1) \)

Example: DCT of differences

Frame difference

DCT of frame difference in bands

- Higher DCT coefficients contain more variance than lower ones
- Taking frame differences removes spatial low-frequency components

Motion Compensation

* Part of the spatial correlation is due to unsuccessful temporal prediction
 - Unpredictable information (occluded regions)
 - Moving spatial information (object movement)
* Find for each block \(x(q, t) \) a corresponding block in encoded frame \(t-1 \): Motion estimation
 - Difference in positions is called motion or displacement vector
Principles of Hybrid Coding – (4)

* Form difference between \(x(q, t) \) and the corresponding block found in encoded frame \(t-1 \): Motion-Comp. Predict.

\[
\Delta x(q, t, d) = x(q, t) - \tilde{x}(q, t - 1, d)
\]

- Motion-compensated prediction difference
- Overhead: 1 motion v. / block

Example – Motion-Compens. Prediction

Motion Comp. / Prediction Gain

<table>
<thead>
<tr>
<th>Frame number</th>
<th>(\sigma_x^2)</th>
<th>(\sigma_{\Delta x}^2)</th>
<th>(G_P)</th>
<th>(\sigma_{\Delta x})</th>
<th>(G_P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1888.2</td>
<td>282.0</td>
<td>6.7</td>
<td>73.5</td>
<td>25.7</td>
</tr>
<tr>
<td>2</td>
<td>1885.9</td>
<td>225.7</td>
<td>8.4</td>
<td>86.8</td>
<td>21.7</td>
</tr>
<tr>
<td>3</td>
<td>1873.6</td>
<td>265.7</td>
<td>7.1</td>
<td>89.5</td>
<td>20.9</td>
</tr>
<tr>
<td>4</td>
<td>1884.6</td>
<td>329.1</td>
<td>5.7</td>
<td>91.9</td>
<td>20.5</td>
</tr>
<tr>
<td>5</td>
<td>1889.4</td>
<td>342.6</td>
<td>5.5</td>
<td>96.0</td>
<td>19.7</td>
</tr>
<tr>
<td>6</td>
<td>1901.1</td>
<td>368.9</td>
<td>5.2</td>
<td>99.5</td>
<td>19.1</td>
</tr>
</tbody>
</table>

around 0.2 - 0.4 bit
MPEG Video / Principles

- MPEG video exploits both spatial and temporal redundancy

- Temporal redundancy
 - Motion estimation
 - Motion compensation

- Spatial redundancy
 - Block transformation
 - Variable-length coding

MPEG Video / Picture types: I, P, B

- Intraframe (I) coded pictures
 - serve as starting point for a group of pictures
 - modest compression
 - reference picture for other picture types

- Predictive (P) coded pictures
 - coded with reference of past pictures (I or P)
 - reference of remaining B-pictures

- Bi-directional (B) coded pictures
 - coded with reference of past and future pictures (I,P and P)
 - never used as a reference
 - highest compression

- DC (D) intra-coded pictures (not used, spec. modes)
MPEG Video / Group Of Pictures (GOP)

- GOP in normal order at input
 - Step 1: code next P picture
 - Step 2: code intermediate B pics.
- GOP after compression
 - Non-chronological order
 - Unequal bit size

GOP after compression

1st step: predictive
2nd step: bi-directional

MPEG Video / Predict, Bidirectional

- MPEG encoder block diagram
- ME process requires
 - Reorder memories
 - ME unit
 - Two-sided extensions
- VLC at output
 - Rate-control buffer
 - qscale parameter coding

MPEG Video / MPEG-1 sampling – (1)

- MPEG-1 resampling is required
 - target 1.5 Mbit/s too low
 - factor of 5 compression by SIF at 30 Mbit/s
- CCIR-601 (4:2:2 sampling)
 - Y: 720x576 frame, 2:1 interlace, 50 Hz
 - U,V: 360x576 frame, id.
- SIF (.2:1:0“ sampling)
 - Y: 352x288 lines
 - U,V: 176x144 lines
 - 25 frame/s
 - 1:1 progressive
MPEG Video / MPEG-2 sampling

* Alternative sampling in MPEG-2
 - 4:2:2, The CCIR-601 studio standard
 - 4:4:4, for High-quality RGB applications

MPEG Video / Intraframe coding part

* MPEG intraframe coder / decoder block diagram
 - Local encoding
 - Reconstruction for motion compensation
 - Based 8x8 DCT, adapt. Quantization and 2-D VLC
 - Feedback coding with rate buffer control

MPEG Video / Quantization – (1)

MPEG Quantization for inter- / intraframe data

* DC coefficient
 - Human eye very sensitive for DC errors, thus fixed quantizer
 - MPEG-1: DCQ=DC / 8.0 and inverse DC = 8.0 x DCQ
 - MPEG-2: higher DC precision 8-11 bits (n x DCQ)

* AC coefficients
 - Weighting W(u,v) according to perception
MPEG Video / Quantization – (2)

* AC coefficients (cont.)
 - MPEG-1 encoder formula
 \[F(u,v) = 16 \frac{F(u,v)}{(2 \ q_scale \ W(u,v))} \]
 - MPEG-1 decoder formula
 \[F(u,v) = 2 \ (F(u,v) + k) \ q_scale \ W(u,v) / 16 \]
 - \(k = 0 \) for intrablocks, and
 - \(k = \text{sign}(F(u,v)) \) for non-intra blocks
 - Mismatch control (value closest to zero):
 if \(F(u,v) \) even, then
 \[F(u,v) = F(u,v) - \text{sign}(F(u,v)) \]

MPEG Video / Quantization-(3) MPEG-2

* MPEG-2 has more precise quantization
* DC coefficients: up to 11 bits precision
* AC coefficients
 - MPEG-2 decoder formula
 \[F(u,v) = 2 \ (F(u,v) + k) \ q_scale \ W(w,u,v) / 32 \]
 - \(q_scale \) is mapped onto larger range than 0...31
 - \(w \) is defined by intra / non-intra and colour sampling
 - \(k = 0 \) for intrablocks, and \(k = \text{sign}(F(u,v)) \) for non-intra blocks
 - special additional mismatch control: \(F(7,7) = F(7,7) \)
 if \(\text{SUM ac}(F(u,v)) \) is odd, and \(F(7,7) = F(7,7) +/- 1 \) if \(F(7,7) \) is even/odd and \(\text{SUM} \) is even.

MPEG Video / Quantization-(4) MPEG-2

MPEG-2 AC coefficients (cont.)

* Extra adaptivity possibilities
 - Quantizer matrix \(W(w,u,v) \) can be reloaded in frame header, giving adaptive weighting on sequence or application
 - \(q_scale \) Parameter can be modified on macroblock basis, enables smooth regulation of bit rate locally in the image
 - In any case, MPEG-2 different weighting for Y and C

MPEG Video / Quantization – (5)

MPEG-2 AC coefficients

* Larger range of \(q_scale \) by mapping of transmit code
 - Two characteristics: uniform and non-uniform
 - Non-uniform curve enables different control for low bit-rates
MPEG Video / VLC Scanning – (1)

* Scanning of transform coefficients (MPEG-1/2)
 - Preprocessing step for variable-length coding
 - Scanning functions reorder coefficients to cluster zeros for runlength coding
 - Start with “low-frequency” coefficients
 - Fundamental scanning pattern is diagonal

Example of zigzag scanning

MPEG Video / VLC Scanning – (2)

* MPEG-2 extension of scanning function
 - Picture header extension: indicate the use of alternative scanning pattern (on picture basis)
 - In case of quantizer matrix download: use always diagonal (zigzag) scanning

MPEG Video / Var. Length Coding – (1)

* Variable-length coding of AC coefficients: algorithm of (runlength, amplitude) coding
 - STEP 1: (load coefficient), test of coefficient is zero
 - STEP 2: (update runlength), if zero coefficient, increment zero counter, go to STEP 4
 - STEP 3: (jointly code), if non-zero coefficient, then
 3a. jointly code [runlength, amplitude] in one codeword
 3b. reset runlength counter
 - STEP 4: (do next coefficient), go to STEP 1. If last coefficient, then go to STEP 5.
 - STEP 5: (EOB) Terminate block with EOB-word, ignore runlength value. Codetable is modified Huffman code.

MPEG Video / Var. Length Coding – (2)

* 2-D VLC table of codewords
 1. Unlikely symbols are coded by [esc. code]+[fixed suffix]
 2. Also VLC coding of macroblock address, motion vectors,...

Example of wordlength table
MPEG Video / Var. Length Coding – (3)

- **2-D. VLC**
- **Table of code words**
 - Special code for 1st coeff.
 - Escape code to avoid long code words
 - Appended sign bit

<table>
<thead>
<tr>
<th>code</th>
<th>runlength</th>
<th>amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>EOB</td>
<td></td>
</tr>
<tr>
<td>1s</td>
<td>(note2)</td>
<td>0</td>
</tr>
<tr>
<td>11s</td>
<td>(note3)</td>
<td>0</td>
</tr>
<tr>
<td>011s</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>000s</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>010s</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>0010s</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0011s</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>011s</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>00010s</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>00011s</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>00101s</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>00110s</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>000010s</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>000011s</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>000101s</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>000110s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000111s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>code</th>
<th>runlength</th>
<th>amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010 0110s</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>0010 0010s</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0010 0101s</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0010 1100s</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>0010 1111s</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>0100 111s</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0101 1s</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>0111 1s</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>00010 0001s</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>00010 0011s</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>00010 1100s</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>00010 1111s</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>00010 1111s</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>00010 1100s</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>0000 0000s</td>
<td>16</td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: s=sign bit, 0=pos/1=neg.
Note 2: code for dct_coeff_first
Note 3: code for dct_coeff_next

MPEG Video / Var. Length Coding – (4)

- **VLC table for motion vectors**
 - Symmetrical
 - Special code
 - Appended sign bit except 0

<table>
<thead>
<tr>
<th>VL code</th>
<th>motion code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 0011 001</td>
<td>-16</td>
</tr>
<tr>
<td>0000 0111 011</td>
<td>-10</td>
</tr>
<tr>
<td>0000 0101 011</td>
<td>-9</td>
</tr>
<tr>
<td>0000 0101 110</td>
<td>-8</td>
</tr>
<tr>
<td>0000 0100 000</td>
<td>-7</td>
</tr>
<tr>
<td>0000 0000 000</td>
<td>-6</td>
</tr>
<tr>
<td>0000 0000 000</td>
<td>-5</td>
</tr>
<tr>
<td>0000 0000 000</td>
<td>-4</td>
</tr>
<tr>
<td>0000 0000 000</td>
<td>-3</td>
</tr>
<tr>
<td>0000 0000 000</td>
<td>-2</td>
</tr>
<tr>
<td>0000 0000 000</td>
<td>-1</td>
</tr>
<tr>
<td>0000 0000 000</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: 1: sign bit, 2:pos/1:neg.
Note: 2: code for dct_coeff_first
Note: 3: code for dct_coeff_next