Temporal redundancy reduction

1. By single-sided prediction
 - motion compensation should cover large area
 - (due to intermediate B pictures)
 - fallback coding required (for excessive motion or uncovered background)

2. Bidirectional motion compensation (interpolation)
 - assume linear interpolation of surrounding pictures
 - bidirectional prediction is more efficient than single-sided
 - more possibilities with uncovered objects
 - not used as reference for further coding: no error propagation in temporal coding
MPEG Video / Quantizer inter block – (1)

MPEG Quantization interframe data (predictive MBs)

- **DC coefficients**
 - Differential DC coefficients
 - Quantized and coded as AC coefficients

- **AC coefficients**
 - MPEG-1 decoder formula
 - \(F(u,v) = 2 (QF(u,v) + k) q_{\text{scale}} W(u,v) / 16 \)
 - \(W(u,v) = 16 \) default, but new matrix can be loaded
 - \(k = \text{sign}(QF(u,v)) \) for inter-blocks
 - Mismatch control: if \(F(u,v) \) even => \(F(u,v) = F(u,v) - \text{sign}(F(u,v)) \) value closest to zero

MPEG Video / Coding modes P&B – (1)

MPEG-1/2 coding modes for inter-coded images (P, B)

<table>
<thead>
<tr>
<th>Predictive (P)</th>
<th>Bidirectional (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion, no motion</td>
<td>Forward, from past,</td>
</tr>
<tr>
<td></td>
<td>Backward, from future,</td>
</tr>
<tr>
<td></td>
<td>interpolated (from both sides)</td>
</tr>
<tr>
<td>Intra (fallback), or non-intra</td>
<td>Intra (fallback), or non-intra</td>
</tr>
<tr>
<td>(regular case)</td>
<td>(regular case)</td>
</tr>
<tr>
<td>Coded (regular), or not-coded</td>
<td>Coded (regular), or not-coded</td>
</tr>
<tr>
<td>(skipped block)</td>
<td>(skipped)</td>
</tr>
<tr>
<td>Default quantization, new q-scale</td>
<td>Default quantization, new q-scale</td>
</tr>
</tbody>
</table>

MPEG Video / Quantizer inter-blocks – (2)

MPEG Quantization interframe data (predictive MBs)

- **AC coefficients (cont.)** for MPEG-2
 - MPEG-2 is more precise with normalization factor 32
 - MPEG-2 special mismatch control
 - Quantizer is uniform, but larger dead zone

MPEG Video / Coding modes P&B – (2)

MPEG-2 extensions for compensated coding modes

- **Frame-based prediction (in both standards)**
 - Equal to MPEG-1 (16x16 compensation blocks)
 - In a frame picture, either frame- or field-based prediction on MB level

- **Field-based prediction (MPEG-2)**
 - Results from interlaced pictures

- **16x8 motion compensation (MPEG-2)**
 - Requires two motion vectors (1 for top- and 1 for bottom field)
 - In B interlaced pictures, even 4 vectors can be used
MPEG Video / Modes for P&B MBs – (3)

MPEG-2 extensions for compensated coding modes

* Special: Dual-prime prediction
 - 1 Motion Vector is coded in full resolution, 1 motion vector is a small differential vector (the dmv)
 - Field-based prediction: 2 vectors are derived from this information. The obtained fields are averaged to get the final prediction
 - Frame-based pictures: the averaging is done for both fields, yielding 4 field predictions.
 - This mode is only used for P-pictures, without B-pictures in between.

MPEG Video / Modes for P&B MBs – (4)

MPEG-2 extensions for compensated coding modes

* Frame-based prediction
 - 1 mv for P
 - 2 mv for B

MPEG Video / Modes for P&B MBs – (5)

MPEG-2 extensions for compensated coding modes

* Field-based prediction
 - 2 mv for field to frame for P
 - 2 mv for field to field for full interlacing P

MPEG Video / Modes for P&B MBs – (6)

MPEG-2 extensions for compensated coding modes

* Field-based prediction (continued)
 - 2 mv for P
 - 4 mv for B
MPEG Video / Modes for P&B MBs – (7)

MPEG-2 extensions for MC-coding

- Special field-based prediction: dual prime
 - Main and dmv vector
 - Scaling of vectors for dual prime prediction

MPEG Video / Decoder structure

- MPEG-2 Video decoder hardware
 - MPEG strongly asymmetric, follows encoder decisions
 - Decoder has no ME, only MC, saves factor 3-4 in complexity

MPEG Video / Flexibility parameters

MPEG Video: Flexibility w.r.t. system parameters

- Video sequence parameters in sequence header
 - Pixels/line, lines per picture
 - Pixel aspect ratio
 - Frame rate, bit rate
 - Required buffer size

- Conclusion MPEG-1
 - MPEG allows for a wide range of input formats
 - However, MPEG-1 is tuned to be optimal for 1.5 Mbit/s bit rate, spatial resolutions of approx. 350x250 pixels, picture rate of 20-30 frame/s, and non-interlaced pictures
MPEG Video / MPEG-1 core param’ts

* MPEG Video core parameters, purpose
 – guaranteed exchange of MPEG-coded data, which should be decodable on different systems
 – also important: bounding of encoder complexity

* MPEG-1 Core parameters
 – Pixels/line <= 720
 – Lines/frame <= 576
 – Frame rate <= 30 Hz
 – Macroblock/picture <= 396
 – Macroblock rate <= 396 x 25 Hz = 9,900 Hz
 – Bit rate <= 1.86 Mbit/s
 – Buffer <= 376,832 bits

MPEG Video / MPEG-2 Flexibility – (1)

* MPEG-2 extensions on flexibility
 – MPEG-2 should give a more generic set of tools for a wider range of applications

* MPEG-2 Picture formats
 – Color formats 4:2:0, 4:2:2, 4:4:4
 – Progressive, interlaced
 – More flexible frame size, more flexible pixel aspect ratio

* MPEG-2 Bit rates
 – „Composite“ quality CCIR-601 at 3-5 Mbit/s
 – Component quality CCIR-601 at 8-10 Mbit/s
 – Variable bit rate, constant bit rate
 – Coded/skipped, motion/ no motion, intra or predicted

MPEG Video / Flexibility Layer Level

* GOP
 – Frame structure I,B,P, and GOP size

* Frame types
 – Intraframe I, predictive P, bidirectional B

* Slice
 – Slice size, fixed/adaptive partitioning, quantization block/size

* Macroblock coding
 – Coded/skipped, motion/ no motion, intra or predicted

* Macroblock quantization
 – Adaptive or default, weighting function default or adaptive

* Motion vectors
 – One-sided, two-sided, motion estimation algorithm

MPEG Video / MPEG-2 Flexibility Extens. – (2)

* Random access
 – On slice basis, independent slice processing

* Bit stream scalability
 – Additional layering of information (partitioning)

* Compatibility
 – Backwards to MPEG-1

* Editing
 – Possible in bit stream domain

* Stability
 – Repeated coding resilience
MPEG V. / MPEG-2 Video extensions – (1)

* Interlaced video
 - Frame or field-based pictures
 - In frame case: extra MB coding options (such as frame/field motion compensation, frame or field DCT
* Hierarchical/scalable coding (optional)
 - HDTV / TV compatibility
 - MPEG-2 / MPEG-1 compatibility
 - Graceful degradation
 - Solutions: frequency scalability, spatial scalability
* Picture format
 - Parametric specification of colour sampling, colour space

MPEG V. / MPEG-2 Video extensions – (2)

* MPEG-2 extensions (cont.)

* Coding
 - Alternate quantization tables
 - Alternate VLC tables
 - Added MB types
 - Extended precision for high-quality PQ up to HDTV

MPEG / MPEG-2 Profiles & Levels – (1)

* MPEG-2 Profiles / Levels
 - Implementation of full specification of MPEG-2 too difficult
 - Profiles serve as limited number of subsets of MPEG-2
 - Bounding of encoder/decoder complexity
* Profile
 - Limited subset of entire bit stream syntax
 - Different profiles support different features (applications)
* Level
 - Defined set of constraints imposed on the parameters in the profile bit stream

MPEG / MPEG-2 Profiles & Levels – (2)

* MPEG-2 profiles / levels
 - Example: MP@ML

* Main Profile
 - sampling 720 x 576, 4:2:0 standard
 - DCT based, frame/field DCT, frame/field MC, B frames
* Simple profile
 - no B pictures are used
* Next profile
 - scalability
 - 4:2:0 or 4:2:2 sampling
MPEG Video / MPEG-2 Profile Table

<table>
<thead>
<tr>
<th>syntactic element</th>
<th>Profile</th>
<th>4:2:0</th>
<th>4:2:2</th>
</tr>
</thead>
<tbody>
<tr>
<td>chroma format</td>
<td>Simple</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>frame rate exts.</td>
<td>Main</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d picture coding type</td>
<td>SNR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sequence table ext.</td>
<td>Spatial</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>scalable mode</td>
<td>High</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>spatial scalable exts.</td>
<td></td>
<td>8,9,10</td>
<td>8,9,10</td>
</tr>
<tr>
<td>intra dc: precision slice structure</td>
<td></td>
<td>restricted</td>
<td>restricted</td>
</tr>
</tbody>
</table>

MPEG Video / MPEG-2 Level Table

<table>
<thead>
<tr>
<th>syntactic element</th>
<th>Level</th>
<th>4:2:0</th>
<th>4:2:2</th>
</tr>
</thead>
<tbody>
<tr>
<td>horizontal vector range</td>
<td>Low</td>
<td>-512</td>
<td>-1024</td>
</tr>
<tr>
<td>vertical vector range (fra.)</td>
<td>Main</td>
<td>-64, +128</td>
<td>-64, +128</td>
</tr>
<tr>
<td>vertical vector range (field)</td>
<td>SNR</td>
<td>-128, +256</td>
<td>-64, +128</td>
</tr>
<tr>
<td>max. sample / line</td>
<td>Main</td>
<td>-32, +64</td>
<td>-64, +128</td>
</tr>
<tr>
<td>max. lines / frame</td>
<td>Spatial</td>
<td>288, 288, 720</td>
<td>768, 1152</td>
</tr>
<tr>
<td>max. frame / second</td>
<td>SNR</td>
<td>288, 288, 720</td>
<td>768, 1152</td>
</tr>
<tr>
<td>Y sample rate (Msam/s)</td>
<td>Spatial</td>
<td>3.041</td>
<td>3.041</td>
</tr>
<tr>
<td>max. bit rate (Mb/s)</td>
<td>SNR</td>
<td>3.041</td>
<td>3.041</td>
</tr>
<tr>
<td>VBV buffer size (Mbit)</td>
<td>Main</td>
<td>4.675</td>
<td>1.825</td>
</tr>
<tr>
<td>VBV buffer size (Mbit)</td>
<td>High</td>
<td>4.675</td>
<td>1.825</td>
</tr>
</tbody>
</table>

Combined overview of MPEG-2 profiles and levels

5LSE0 - Mod 10
Part 3
Towards the future..., Lower bit rate and Video Objects
MPEG Outlook / MPEG-4 – (1)

- Not only bit streams and bit maps
- Abstract object-oriented multimedia
- A/V Programs as SW programs
- Elements can be described independently and combined only at playback time
- Elements can include stills, digital video, 3D graphics, text, speech
- Elements can be combined intelligently
 - video texture on 3D objects

MPEG Outlook / MPEG-4 Objects – (2)

- Going from images to individual objects

MPEG Outlook / MPEG-4 aspects – (3)

- System aspects and manipulation

MPEG Coding / Conclusions – (1)

- MPEG-1 provides a suitable platform for 1 Mbit/s applications, whereas MPEG-2 enables TV up till HDTV coding and contains many extensions for interlaced images
- MPEG Video Compression is based on motion-compensated DCT coding, with extensive VLC usage of various signal components
- The complete specification for audio, video and data, together with system has resulted in wide acceptance of MPEG-1 and MPEG-2 for many applications
- MPEG-4 will be the next important step and is based on several developments: Internet, Blu-ray disc, mobile phone
MPEG Coding / Conclusions – (2)

- MPEG-4 has proven to be the next important step and is more pluriform
- Resulted in several standards due to Internet development
 - 1. MPEG-4 AVC / H.264 for HDTV-optimized coding on Blu-ray Disc (stream-based decoding)
 - Again Motion-Compensated DCT Coding but optimized
 - Halved bit rate of MPEG-2
 - 2. MPEG-4 Object-Oriented Coding, for low bit-rates and interactive or conditional access to individual parts
 - Objects on Internet (not yet broadly applied)