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 Example: how to recognize handwritten digits 

automatically? 

– We want to build a machine with 

• image of a digit as input 

• identity of the digit (0,…,9) as output 

– Why is it difficult? 

• Wide variability of handwriting 

• Rules or heuristics do not work 

  

Introduction – (1) 

(The slides are based on “Pattern recognition and machine learning”, Ch. Bishop) 
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Introduction – (2)  

Examples of handwritten digits taken from US zip-codes 
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 Possible solution – machine learning 

– Train the algorithm using a training set (digits) and 

target vector (their identities)  

– Test it with a test set (new images of digits) 

– Generalization – ability to categorize new examples 

correctly 

 How can we facilitate pattern recognition? 

– Preprocess data in the training set – extract features 

(see module 4) 

Introduction – (3) 
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 Supervised learning 

– Training data consists of input vectors and target 

vectors 

– Classification - assign each input vector to one of a finite 

number of discrete categories  

 Unsupervised learning 

– No target vector in the input data 

– Clustering – discover groups of similar examples within 

the data 

Introduction – (4) 
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 Gaussian distribution  

– has some important analytical properties  

– but suffers from limitations when modeling real data sets 

Mixture models and EM 
Gaussian mixture – (1) 

Single Gaussian distribution fails 

to capture the nature of data 

Linear combination of two Gaussians 

fits better 
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Mixture models and EM 
Gaussian mixture – (2) 

 Mixture distributions 

– linear combinations of basic distributions 

 To approximate almost any continuous density 

– use sufficient number of Gaussians 

– adjust means, covariances, coefficients in the linear 

combination 

Three Gaussians in blue 

and their sum in red 
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Mixture models and EM 
Gaussian mixture – (3) 

Superposition of K Gaussian densities  
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Mixture models and EM 
Gaussian mixture – (4) 

 Gaussian mixture distribution is governed by 

parameters    ,    ,     

 

         

 How can we find these parameters? 

– Possible solution – use maximum likelihood 

– Likelihood function expresses how probable the observed 

data is for a given set of parameters 

π μ Σ

     KKKππ  ,...,,,...,,,..., 111 Σμπ 
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Mixture models and EM 
Gaussian mixture – (5) 

 Log of the likelihood function: 

 

         

 

 

– No easy analytical solution 

– Expectation-maximization (EM) can be used 
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Mixture models and EM 
Gaussian mixture – (6) 

 Where are Gaussian mixture models used? 

– Data mining 

– Pattern recognition  

– Machine learning 

– Statistical analysis 

 How are their parameters determined? 

– Maximum likelihood using the EM algorithm 
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K-means clustering – (1) 

 Problem: identify groups (clusters) of data points 

in multidimensional space 

– we have a data set                     ,  

– variable x  - D-dimensional 

– goal: partition data into K clusters, value of K is given 

 Intuitive definition of cluster 

– group of data points whose inter-point distances are small 

compared with the distances to points outside of the cluster 

 Nxx ,...,1
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K-means clustering – (2) 

 Distortion measure 

 

 

– where                  - binary indicator variable:             if data 

point      is assigned to cluster k and              otherwise, 

        - data point, 

        - vector assigned to cluster k (center of cluster) 
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– it is sum of the squares of the distances of each data point 

to its assigned vector 
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K-means clustering – (3) 

 Goal: find values for         and          that minimize J  

 How can we find the solution? 

– Iterative procedure 

– each iteration involves two successive steps 

– successive optimizations with respect to          and           

– repeat until convergence 

– no further change in the assignments 

– or until a maximum number of iterations is exceeded 

 nkr

 k nkr

 k
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K-means clustering – (4) 

 Description of algorithm 

– Choose some initial values for the  

– First phase 

– Minimize J with respect to         keeping           fixed 

– Second phase 

– Minimize J with respect to         keeping           fixed 

– Repeat until convergence 

 nkr

 k

 k

 k  nkr

16 

PdW-SZ-EB / 2016 

 Fac. EE  SPS-VCA  
Adv. Topics MMedia Vid. Cod. / 

5LSH0 / Module 8 Classif. I 

K-means clustering – (5) 

 nkr

 First phase of algorithm 

– Determine          - assign data points to clusters 

– Optimize for each n separately 
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K-means clustering – (6) 

 Second phase of algorithm 

– Determine           - compute the cluster means 

– J is a quadratic function of         , set its partial derivative 

to zero for finding its minimum 
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K-means clustering – (7) 
Example 
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K-means clustering – (8) 

 Example: minimization of 

cost function J  

– Blue points – after assigning 

data points to clusters 

– Red points – computing 

cluster means 

– Algorithm converges after 

the third step, final cycle 

produces no changes 
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 What are the limits of this algorithm? 

 

– Algorithm is based on Euclidean distance as the measure of 

dissimilarity between a data point and a prototype vector 

 Data types are limited (for example, categorical labels 

cannot be used) 

 determination of the cluster is not robust to outliers 

K-means clustering – (9) 
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K-means clustering – (10) 

 K-medoids algorithm  

– Generalization of the K-means 

– Introduces a more general dissimilarity measure  

– The distortion measure to minimize is then 

 

 

– But the computation of centers of clusters is more 

complicated 
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K-means clustering – (11) 

 Property of K-means algorithm 

– Every data point is assigned uniquely to one of the clusters 

– but some data points lie roughly midway between cluster 

centers 

– and it is not clear that the hard assignment to the nearest 

cluster is most appropriate 

  What kind of assignment would be better? 

– Adopt a probabilistic approach => soft assignments 
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K-means clustering 
Image segmentation and compression – (1)  

 Some applications of K-means algorithm   

– Image segmentation 

– Image compression 

– Partition an image into regions each of which 

– has a reasonably homogeneous visual appearance or 

– corresponds to objects or parts of object 

 What is the goal of segmentation?   
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K-means clustering 
Image segmentation and compression – (2)  

 Segmentation 

– Each pixel is a separate {R,G,B} 3D data point 

– Apply K-means to these points 

– Redraw the image replacing each pixel vector with the 

{R,G,B} intensity triplet given by the center         to which 

this pixel is assigned 
kμ
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K-means clustering 
Image segmentation and compression – (3)  

Example: for a given value of K, the algorithm represents the 

image using a palette of only K colors 

Smaller values of K => higher compression => poorer image quality 
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K-means clustering 
Image segmentation and compression – (4)  

Example 

K-means is not a sophisticated approach to image segmentation 

because it takes no account of the spatial proximity of different pixels 

K=2 K=3 K=10 Original image 
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K-means clustering 
Image segmentation and compression – (5)  

 Application of the K-means to lossy data 

compression  

– For each of the N data points, store only the identity k of 

the cluster to which it is assigned 

– Store the values of the K cluster centers   

– Requires less data provided that K<N 

– Each data point is approximated by its nearest center 

It is called vector quantization; cluster centers are called code-

book vectors 
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Mixtures of Gaussians – (1)  

 Earlier – Gaussian mixture model introduced as a 

simple linear superposition of Gaussian components 

– Provides a richer class of density models than a single 

Gaussian 

 Now – Formulate Gaussian mixture in terms of 

discrete latent (hidden, unobserved) variables  

– Provides a deeper insight in this distribution 

– Motivates the Expectation-Maximization (EM) algorithm 
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Mixtures of Gaussians – (2)  

 Gaussian mixture distribution 

 

 

 Introduce a K-dimensional binary random variable z 

– One-of-K representation: particular element zk=1 and all 

other elements are equal to 0 

–   
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Mixtures of Gaussians – (3)  

 Marginal distribution over z 

 

 

 Conditional distribution of x given a particular value 

for z is a Gaussian 
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Mixtures of Gaussians – (4)  

 Joint distribution is  

 Marginal distribution of x is a sum of the joint 

distribution over all possible states of z 

 

 

– It is a Gaussian mixture 

– For every observed data point there is a latent variable 

   zxz pp
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Mixtures of Gaussians – (5)  

 Another quantity – conditional probability of z 

given x 

– Using Bayes’ theorem  

– we find 
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Mixtures of Gaussians – (6)  

 We view       as the posterior probability of zk=1  

 and             – as the corresponding posterior 

probability once we have observed x  
 

            will also be viewed as the responsibility that 

the component k takes for “explaining” the 

observation x  

k

 kz

 kz
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Mixtures of Gaussians – (7)  

 

Contours of constant density 

for each of the mixture 

components;  

the 3 components are red, 

blue and green, and the 

values of the mixing 

coefficients are shown below 

each component 

Example: mixture of 3 Gaussians in a two-dimensional space 
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Mixtures of Gaussians – (8)  

Example: mixture of 3 Gaussians in a two-dimensional space 

Contours of the marginal 

probability density p(x) 

Surface plot of the distribution p(x) 
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Mixtures of Gaussians – (9)  
Example: 500 points drawn from the shown above mixture of 

3 Gaussians 

Joint distribution p(z)p(x|z);  

the three states of z are red, 

green and blue 

Corresponding samples from the 

marginal distribution p(x); just x 

values are plotted 
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Mixtures of Gaussians – (10)  

Example: 500 points drawn from the shown above mixture of 

3 Gaussians 

Colors represent the 

responsibilities             associated 

with data point xn, obtained by 

plotting the corresponding point 

using proportions of red, blue and 

green given by responsibilities 

 nkz
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Mixtures of Gaussians 
Maximum likelihood – (1) 

Log of the likelihood function 
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 Problem with maximum likelihood framework 

applied to Gaussian models 

– It is not a well posed problem 

– Singularities may occur 
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Mixtures of Gaussians 
Maximum likelihood – (2) 

  What is a well posed problem? 

 Problem is well posed according to Hadamard 

when 

– A solution exists 

– The solution is unique 

– The solution depends continuously on the data (a 

small change in the data causes only a small change 

in the solution) 
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Mixtures of Gaussians 
Maximum likelihood – (3) 

 
 Singularities 

– occur when one of the 

Gaussian components 

“collapses” onto a 

specific data point 

– are an example of a 

severe over-fitting that 

can occur in a 

maximum likelihood 

approach 
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Mixtures of Gaussians 
Maximum likelihood – (4) 

  Maximizing the log likelihood function for a 

Gaussian mixture model 

– more complex problem than for a single Gaussian 

– no easy analytical solution 

– although gradient-based techniques are feasible 

– we now consider an alternative approach – EM algorithm 
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Mixtures of Gaussians 
EM for Gaussian mixtures – (1) 

  Expectation-Maximization (EM) algorithm  

 (Dempster et al., 1977; McLachlan and  Krishnan, 1997) 

– method for finding maximum likelihood solutions for 

models with latent variables 

– has broad applicability 

– medical image reconstruction 

– natural language processing 

– … 
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Mixtures of Gaussians 
EM for Gaussian mixtures – (2) 

 

where 

 Find the conditions for optimum of the likelihood 

functions  

– Set the partial derivatives of   

 with respect to                to zero 

– For the means we get 
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Mixtures of Gaussians 
EM for Gaussian mixtures – (3) 

 – For covariance 

  

 

– For the mixing coefficients 
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 These results constitute no closed-form solution 

for the parameters of the mixture model 

– Responsibilities             depend on these parameters in a 

complex way 

 nkz
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Mixtures of Gaussians 
EM for Gaussian mixtures – (4) 

 
 EM algorithm – iterative scheme for finding a 

solution to the maximum likelihood problem 

– Choose some initial values for the means, covariances and 

mixing coefficients 

– Expectation step (E step): use the current parameter values  

to evaluate posterior probabilities (responsibilities) 

– Maximization step (M step): estimate the means, covariances 

and mixing coefficients using the formulas above 

– Repeat until convergence  
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Mixtures of Gaussians 
EM for Gaussian mixtures – (5) 

 
Example: EM algorithm 
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Mixtures of Gaussians 
EM for Gaussian mixtures – (6) 

  How can the results of K-means clustering be used 

in the EM algorithm? 
 

– Run the K-means algorithm in order to find a suitable 

initialization of a Gaussian mixture model 

– Covariance matrices can be initialized as covariances of the 

clusters found by the K-means algorithm 

– Mixing coefficients can be set as fractions of data points 

assigned to the respective clusters 
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Mixtures of Gaussians 
EM for Gaussian mixtures – (7) 

 
 EM algorithm: summary 

 

– Given a Gaussian mixture model  
 

– The goal is to maximize the likelihood function with 

respect to the parameters (comprising the means and 

covariances of the components and the mixing 

coefficients) 
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Mixtures of Gaussians 
EM for Gaussian mixtures – (8) 

  EM algorithm: main steps 

– 1. Initialize the means      , covariances      and mixing 

coefficients      , and evaluate the initial value of the log 

likelihood 

– 2. E step: evaluate the responsibilities using the current 

parameter values 
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Mixtures of Gaussians 
EM for Gaussian mixtures – (9) 

  EM algorithm: main steps 

– 3. M step: Re-estimate the parameters using the current 

responsibilities 
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Mixtures of Gaussians 
EM for Gaussian mixtures – (10) 

  EM algorithm: main steps 

– 4. Evaluate the log likelihood 

 

 

 

– and check the convergence of either the parameters or the 

log likelihood 

– If the convergence criterion is not satisfied, return to step 2 
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An Alternative View of EM 
Relation to K-means – (1) 

  There is a close similarity between the K-means 

and EM algorithms 

– K-means performs a hard assignment of data points to 

clusters => each data point is associated uniquely with one 

cluster 

– EM makes a soft assignment 

– K-means algorithm can be derived as a particular limit of EM 

for Gaussian mixtures 

53 

PdW-SZ-EB / 2016 

 Fac. EE  SPS-VCA  
Adv. Topics MMedia Vid. Cod. / 

5LSH0 / Module 8 Classif. I 

An Alternative View of EM 
Relation to K-means – (2) 

  Consider a Gaussian mixture model with  

– Covariance matrices of the mixture components are  

–      – variance parameter that is shared by all the 

components, I – the identity matrix 

– Consider     as a constant, and  

– EM algorithm for the mixture of Gaussians will lead to the 

following conclusions 

Iε
ε

ε 0ε
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An Alternative View of EM 
Relation to K-means – (3) 

  Under the conditions mentioned above  

– we obtain a hard assignment of data points to clusters, as in 

the K-means algorithm,  

– Each data point is assigned to the cluster with the closest 

mean 

– K-means algorithm does not estimate the covariances of the 

cluster but only the cluster means 

– A hard assignment version of the Gaussian mixture model 
with general covariance matrices is called elliptical K-means  

 

  nknk rz 
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An Alternative View of EM 
Mixtures of Bernoulli distributions – (1) 

  So far – we focused on distributions of continuous 

variables described by mixtures of Gaussians 
 

 Now – consider mixture of discrete binary 

variables 

– described by Bernoulli distributions 

– This model is called latent class analysis 
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An Alternative View of EM 
Mixtures of Bernoulli distributions – (2) 

 

i

 Bernoulli distribution 

– Consider a set of D binary variables xi, where i = 1,…,D, 

each of which is governed by a Bernoulli distribution with 

parameter     : 

 

 

  

 where                           and   

    






D

i

x

i

x

i
iip

1

1
1 μx

 TDxx ,...,1x  TD ,...,1μ

57 

PdW-SZ-EB / 2016 

 Fac. EE  SPS-VCA  
Adv. Topics MMedia Vid. Cod. / 

5LSH0 / Module 8 Classif. I 

An Alternative View of EM 
Mixtures of Bernoulli distributions – (3) 

 Example:  

binary images of handwritten digits “2”, “3” and “4” 

The complete data set is 600 images 
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An Alternative View of EM 
Mixtures of Bernoulli distributions – (4) 

 



Example:  

EM results for a three components mixture model; 

      parameters for each component of the mixture model 

For comparison: single distribution 
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Example of EM 
Image segmentation – (1) 

  
– Model the joint distribution of color and texture features 

with a mixture of Gaussians 

– Use EM to estimate the parameters of this model 

– The resulting clusters provide the segmentation of the 

image 
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Example of EM 
Image segmentation – (2) 

 

Image from Ch. Carson et al, Blobworld: image segmentation using expectation-maximization 

and its application to image querying, IEEE Transactions on PAMI, Vol. 24, Num. 8, August 2002  

Original and smoothed images 
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Example of EM 
Image segmentation – (3) 

 

Image from Ch. Carson et al, Blobworld: image segmentation using expectation-maximization 

and its application to image querying, IEEE Transactions on PAMI, Vol. 24, Num. 8, August 2002  

Color (top row of images) and texture (bottom row) features  
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Example of EM 
Image segmentation – (4) 

 

Image from Ch. Carson et al, Blobworld: image segmentation using expectation-maximization 

and its application to image querying, IEEE Transactions on PAMI, Vol. 24, Num. 8, August 2002  

The result of clustering the feature vectors into 2, 3, 4, 5 

Gaussian clusters using EM 
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Principal Component Analysis 
Introduction – (1) 

  So far – we discussed probabilistic models having 

discrete latent variables, such as mixture of 

Gaussians 
 

 Now – explore models in which some or all of the 

latent variables are continuous 

– Motivation: property of many data sets – data points can be 

represented by fewer dimensions than those in the original 

data space 
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Principal Component Analysis 
Introduction – (2) 

 
 Consider an artificial data set  

– constructed by taking images of digits, represented by 

64x64 pixel grey-scale image,   

– and embedding them in larger images of size 100x100 by 

padding with pixels having the value 0 

– Location and orientation of digits is varied at random  
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Principal Component Analysis 
Introduction – (3) 

 

Image size: 100x100 = 10000 pixels 

 Synthetic data set  

– multiple copies of digit images where the digit is randomly 

displaced and rotated within some larger image field 
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Principal Component Analysis 
Introduction – (4) 

  Resulting images 

– Represented by a point in the 10000-dimensional data space 

– However, across a data set of these images, there are only 

three degrees of freedom of variability 

– vertical translation 

– horizontal translation 

– rotation 

– Intrinsic dimensionality is three 
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Principal Component Analysis 
Introduction – (5) 

  Translation and rotation parameters in this example 

– latent variables 

– because we observe only the images and are not told 

which values of the translation or rotation variables where 

used to create them 

– Real digit image data => more degrees of freedom 

– Scaling, handwriting variability 

– but still smaller amount than the data set dimensionality 
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Principal Component Analysis 
Introduction – (6) 

  Such latent variables can be used for 

– data compression 

– density modeling  

– data modeling 

– select a point according to some latent variable 

distribution 

– generate an observed data point by adding noise, drawn 

from some conditional distribution of the data variables 

given the latent variables 
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Principal Component Analysis – (1) 

  PCA (Principal Component Analysis)  

 is widely used for 

– dimensionality reduction 

– lossy data compression 

– feature extraction 

– data visualization 

 

 

 

 Also known as Karhunen-Loève transform 
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Principal Component Analysis – (2) 

  Two definitions of PCA (give rise to the same 

algorithm) 

– Orthogonal projection of the data onto a lower dimensional 

space (principal subspace), such that the variance of the 

projected data is maximized 

– Linear projection that minimizes the average projection cost, 

defined as the mean squared distance between the data 

points and their projections 

71 

PdW-SZ-EB / 2016 

 Fac. EE  SPS-VCA  
Adv. Topics MMedia Vid. Cod. / 

5LSH0 / Module 8 Classif. I 

Principal Component Analysis – (3) 

 
PCA seeks a space of lower 

dimensionality, denoted by the 

magenta line, such that the 

orthogonal projection of the data 

points (red dots) onto this 

subspace maximizes the variance 

of the projected points (green dots) 
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Principal Component Analysis – (4) 

 

Alternative definition of PCA: 

minimize the sum of squares of the 

projection errors (blue lines) 



13 

73 

PdW-SZ-EB / 2016 

 Fac. EE  SPS-VCA  
Adv. Topics MMedia Vid. Cod. / 

5LSH0 / Module 8 Classif. I 

Principal Component Analysis – (5) 

  PCA steps 

– Evaluate the mean 

– and the covariance matrix of the data set 

– Find M eigenvectors of the covariance matrix that 

correspond to M largest eigenvalues 

 

  What are the eigenvalues and eigenvectors? 
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Principal Component Analysis – (6) 

  Eigenvalue and eigenvector 
 

– Given a linear transformation A, a non-zero vector x is 

an eigenvector of A if it satisfies the eigenvalue 

equation Ax = λx for some scalar λ 
 

– The scalar λ is called eigenvalue of A corresponding 

to the eigenvector x 

 

 (source: http://en.wikipedia.org/wiki/Eigenvector )  
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Principal Component Analysis – (7) 

 

(source: http://en.wikipedia.org/wiki/Eigenvector )  

Geometrically the eigenvalue 

equation means that under the 

transformation A eigenvectors do 

not change their direction.  

 

The eigenvalue λ is simply the 

amount of "stretch" or "shrink" to 

which a vector is subjected when 

transformed by A.  
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Principal Component Analysis 
Applications – (1) 

  PCA approximation to a data vector xn 

 

 

 

– where      – mean of the data set,  

–      – eigenvectors of the covariance matrix for the 

original data set {xn} 

– M – number of principal components 
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Principal Component Analysis 
Applications – (2) 

  Example: PCA reconstruction obtained by 

retaining M principal components 

– As M increases, the reconstruction becomes more 

accurate 

– It becomes perfect when M = D = 28x28 = 784 

  

–     
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Principal Component Analysis 
Applications – (3) 

  Example: PCA for 

human face recognition 

– Eigenfaces – eigenvectors 

used for human face 

recognition 

– Obtained by PCA applied 

to a set of images of 

human faces 

 

 

(source: http://en.wikipedia.org/wiki/Eigenvector )  
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Principal Component Analysis 
Autoassociative neural networks – (1) 

  Neural networks for unsupervised learning 

– can be used for dimensionality reduction 

– use the same number of inputs and outputs D and M 

hidden layers, with M < D 

– Input vectors and targets for training are the same => the 

network learns to map each vector onto itself by 

minimizing the error (w – network parameters, weights) 
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Principal Component Analysis 
Autoassociative neural networks – (2) 

 Autoassociative multilayer 

perceptron with two layers 

of weights 

 

Network is trained to map 

input vectors onto 

themselves by minimization 

of sum-of-squares error 

 

It is equivalent to PCA 
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Summary and conclusions – (1) 

  K-means clustering 

– can be used for segmentation, unsupervised 

classification 

– simple, easy to implement 

– assigns one data point to one cluster, no soft 

assignment 
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Summary and conclusions – (2) 

  Mixture of Gaussians 

– useful for modeling probability densities, allows flexibility 

necessary for it 

– parameters are estimated using EM algorithm 

 
 EM algorithm 

– iterative, does not require a closed-form solution 

– estimates parameters of mixture models 

– can be used for segmentation (see slides 59-62 ) 
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Summary and conclusions – (3) 

 
 PCA 

– provides principal components for a data set 

– successfully used for dimensionality reduction (see 

eigenfaces) 

– assumes high signal-to-noise ratio  

 (large variance => important dynamics) 
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