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Introduction — (1)
* Example: how to recognize handwritten digits
automatically?
— We want to build a machine with
* image of a digit as input
* identity of the digit (0,...,9) as output
- Why is it difficult?
+ Wide variability of handwriting
* Rules or heuristics do not work

(The slides are based on “Pattern recognition and machine learning”, Ch. Bishop)
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Introduction - (2) Introduction - (3)
Examples of handwritten digits taken from US zip-codes * Possible solution — machine learning
— Train the algorithm using a training set (digits) and
Z, target vector (their identities)
o / { % q — Test it with a test set (new images of digits)
- Generalization — ability to categorize new examples
- @ correctly
S 7 2 K * How can we facilitate pattern recognition?
— Preprocess data in the training set — extract features
(see module 4)
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Mixture models and EM 6
Introduction - (4) Ixture modeis an
Gaussian mixture - (1)
* Supervised learning * Gaussian distribution
— Training data consists of input vectors and target - has some important analytical properties
vectors - but suffers from limitations when modeling real data sets
- Classification - assign each input vector to one of a finite >
number of discrete categories & & '
* Unsupervised learning o wiEee
- No target vector in the input data ) Sl ) @
— Clustering — discover groups of similar examples within Single Gaussian distrbution fails Linear'coﬁbiﬁgtién of two Gaussians
the data to capture the nature of data fits better
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Mixture models and EM

Gaussian mixture - (2)
* Mixture distributions

- linear combinations of basic distributions

* To approximate almost any continuous density
- use sufficient number of Gaussians

- adjust means, covariances, coefficients in the linear
combination R

Three Gaussians in blue
and their sum in red

Mixture models and EM
Gaussian mixture - (3)

Superposition of K Gaussian densities

PO =X mN ()

is called a mixture of Gaussians, where

Ty - mixing coefficients, 0 <7z, <1
N (x !

1 1 _—
”'Z)ZWWEXP{_E(X_H) z (X—F)}

Each Gaussian density has its mean £ and covariance 2
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Mixture models and EM Mixture models and EM
Gaussian mixture - (4) Gaussian mixture - (5)
* Gaussian mixture distribution is governed by % Log of the likelihood function:
parameters T, p, X N CK
In p(X|m,p, X) = In[ T N X |1, 2, j
M=ty my fo W=ttt fy E={E By | 2 2N el )
, X =K X }
* How can we find these parameters?
— Possible solution — use maximum likelihood - No easy analytical solution
- Likelihood function expresses how probable the observed - Expectation-maximization (EM) can be used
data is for a given set of parameters
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Mixture models and EM

Gaussian mixture — (6)

* Where are Gaussian mixture models used?
— Data mining
— Pattern recognition
— Machine learning
— Statistical analysis

* How are their parameters determined?
— Maximum likelihood using the EM algorithm
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K-means clustering - (1)

* Problem: identify groups (clusters) of data points
in multidimensional space

— we have a data set {x1 Xy }

- variable X - D-dimensional

- goal: partition data into K clusters, value of K is given
* Intuitive definition of cluster

- group of data points whose inter-point distances are small
compared with the distances to points outside of the cluster
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K-means clustering - (2) K-means clustering - (3)
« Distortion measure * Goal: find values for {r, } and {, } that minimize J
b 2 * How can we find the solution?
I=2 2l — .
L k= - Iterative procedure
— where Iy, € {0,1}- binary indicator variable: I, =1 if data — each iteration involves two successive steps
point x, is assigned to cluster k and fw =0 otherwise, - successive optimizations with respect to {r,, } and {, }
%, - data point, — repeat until convergence
- vector assigned to cluster k (center of cluster) — no further change in the assignments
— itis sum of the squares of the distances of each data point _ or until a maximum number of iterations is exceeded
to its assigned vector
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K-means clustering — (4) K-means clustering — (5)
* Description of algorithm * First phase of algorithm
~ Choose some initial values for the {4, | — Determine {f | - assign data points to clusters
- First phase — Optimize for each n separately
- Minimize J with respect to {rnk } keeping {ﬂk} fixed ,
- Second phase o1 i k=argminfx, —/l,-H
— Minimize J with respect to {11, } keeping {r,, } fixed "o otherwise
— Repeat until convergence
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K-means clustering — (6 -
-means clustering — (6) Example Q
* Second phase of algorithm gs J
— Determine {z, } - compute the cluster means R
— Jis a quadratic function of {4, }, set its partial derivative
to zero for finding its minimum
dJ N
7:22rnk(xn_;uk)zo J
d/.lk n—1 ) > ‘
then = PINRE § f
‘ Zn r"k §‘ l
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K-means clustering — (8)

* Example: minimization of
cost function J

19

- Blue points - after assigning e
data points to clusters 1

- Red points — computing 500
cluster means Q

— Algorithm converges after A o iarso

the third step, final cycle N i 2 3 :
produces no changes
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K-means clustering - (9)
* What are the limits of this algorithm?

- Algorithm is based on Euclidean distance as the measure of
dissimilarity between a data point and a prototype vector

= Data types are limited (for example, categorical labels
cannot be used)

= determination of the cluster is not robust to outliers
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K-means clustering — (10) K-means clustering — (11)
* K-medoids algorithm * Property of K-means algorithm
- Generalization of the K-means - Every data point is assigned uniquely to one of the clusters
— Introduces a more general dissimilarity measure "V — but some data points lie roughly midway between cluster
— The distortion measure to minimize is then centers
~ N K - and itis not clear that the hard assignment to the nearest
J= ZZ iV (%0 44,) cluster is most appropriate
n=1 k=1
— But the computation of centers of clusters is more * What kind of assignment would be better?
complicated — Adopt a probabilistic approach => soft assignments
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K-means clustering K-means clustering
Image segmentation and compression — (1) Image segmentation and compression — (2)
* Some applications of K-means algorithm )
- Image segmentation * Segmentation
- Image compression - Each pixel is a separate {R,G,B} 3D data point
— Apply K-means to these points
* What is the goal of segmentation? — Redraw the image replacing each pixel vector with the
— Partition an image into regions each of which {R.’G’B} ”?‘e”S“.V triplet given by the center v, to which
i this pixel is assigned
- has a reasonably homogeneous visual appearance or
— corresponds to objects or parts of object
TU / @ e e SH0 Houie s lsst | B VEA TU / @ e sk SH0 oo cisst | B VEA




25
K-means clustering
Image segmentation and compression — (3)

Example: for a given value of K, the algorithm represents the
image using a palette of only K colors

K =10 Original image

K=2 K=3

Smaller values of K => higher compression => poorer image quality
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K-means clustering
Image segmentation and compression — (4)
Example
K=2 K=3 K=10

Original image

K-means is not a sophisticated approach to image segmentation
because it takes no account of the spatial proximity of different pixels
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K-means clustering
Image segmentation and compression - (5)

* Application of the K-means to lossy data
compression

— For each of the N data points, store only the identity k of
the cluster to which it is assigned

— Store the values of the K cluster centers
—Requires less data provided that K<N
- Each data point is approximated by its nearest center

Itis called vector quantization; cluster centers are called code-
book vectors
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Mixtures of Gaussians - (1)

* Earlier - Gaussian mixture model introduced as a
simple linear superposition of Gaussian components

- Provides a richer class of density models than a single
Gaussian

* Now — Formulate Gaussian mixture in terms of
discrete latent (hidden, unobserved) variables
— Provides a deeper insight in this distribution
- Motivates the Expectation-Maximization (EM) algorithm
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Mixtures of Gaussians - (2)

* Gaussian mixture distribution
K
() =Y m N (K, .Z,)
k=1

* Introduce a K-dimensional binary random variable z

- One-of-K representation: particular element z,=1 and all
other elements are equal to 0

el Y, z,=1
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Mixtures of Gaussians - (3)

* Marginal distribution over z
K
p(z, =D =m, 0<m <l > m =1

k=1

* Conditional distribution of x given a particular value
for z is a Gaussian

Pz =1)= N (s 2,)
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Mixtures of Gaussians — (4)

+ Joint distribution is p(z)p(xz)
* Marginal distribution of x is a sum of the joint
distribution over all possible states of z

p(0)= 3 plellote) =37 N )

- Itis a Gaussian mixture
— For every observed data point there is a latent variable
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Mixtures of Gaussians - (5)

* Another quantity — conditional probability of z

given x p(X[Y )p(¥)

- Using Bayes' theorem p(Y|X )=~ 2152
' p(x)

- we find

Hz)= P(Zk :ZI.JX): Pz, :1)p(x‘zk :l) _ ﬂkW(X‘yk,Zk)

ZK: Pz :1)p(x‘zj :1) g”iw("‘ﬂj'zj)

=1
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Mixtures of Gaussians - (6)

* We view 7, as the posterior probability of z,=1

* and y(z, ) - as the corresponding posterior
probability once we have observed x

* ) (Zk) will also be viewed as the responsibility that
the component k takes for “explaining” the
observation x
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Mixtures of Gaussians - (7)

Example: mixture of 3 Gaussians in a two-dimensional space

Contours of constant density 1
for each of the mixture
components;

the 3 components are red, 0.5
blue and green, and the
values of the  mixing
coefficients are shown below ©
each component
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Mixtures of Gaussians - (8)

Example: mixture of 3 Gaussians in a two-dimensional space

05

0 0S5 1
Contours of the marginal ~ Surface plot of the distribution p(x)
probability density p(x)
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Mixtures of Gaussians - (9)
Example: 500 points drawn from the shown above mixture of
3 Gaussians

0.5 0.5

0 0

0 05 1 o 05 1
Joint distribution p(z)p(x|z); Corresponding samples from the
the three states of z are red, marginal distribution p(x); just x
green and blue values are plotted
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Mixtures of Gaussians — (10)

Example: 500 points drawn from the shown above mixture of
3 Gaussians

Colors represent the
responsibilities 7(z,, ) associated
with data point x,, obtained by (5
plotting the corresponding point
using proportions of red, blue and
green given by responsibilities 0

0 0.5 1
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Mixtures of Gaussians
Maximum likelihood - (1)

Log of the likelihood function
N K

W, Z)z Zln{Zﬂ'k.’J\f(xn,uk,Zk )}
n= k=1

* Problem with maximum likelihood framework
applied to Gaussian models
- Itis not a well posed problem
- Singularities may occur
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Mixtures of Gaussians
Maximum likelihood - (2)

* What is a well posed problem?
* Problem is well posed according to Hadamard
when
— A solution exists
— The solution is unique

— The solution depends continuously on the data (a
small change in the data causes only a small change

in the solution)
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Mixtures of Gaussians
Maximum likelihood - (3)

* Singularities

— occur when one of the
Gaussian components  p(x)
“collapses” onto a
specific data point

— are an example of a
severe over-fitting that
can occurin a : _
maximum likelihood '
approach
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Mixtures of Gaussians
Maximum likelihood - (4)

* Maximizing the log likelihood function for a
Gaussian mixture model
— more complex problem than for a single Gaussian
- no easy analytical solution
— although gradient-based techniques are feasible
— we now consider an alternative approach — EM algorithm
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Mixtures of Gaussians
EM for Gaussian mixtures - (1)

* Expectation-Maximization (EM) algorithm
(Dempster et al., 1977; McLachlan and Krishnan, 1997)

- method for finding maximum likelihood solutions for
models with latent variables

— has broad applicability
- medical image reconstruction

- natural language processing
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EM for Gaussian mixtures — (4)
* EM algorithm - iterative scheme for finding a
solution to the maximum likelihood problem

— Choose some initial values for the means, covariances and
mixing coefficients

— Expectation step (E step): use the current parameter values
to evaluate posterior probabilities (responsibilities)

— Maximization step (M step): estimate the means, covariances
and mixing coefficients using the formulas above

— Repeat until convergence
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Mixtures of Gaussians Mixtures of Gaussians
EM for Gaussian mixtures - (2) EM for Gaussian mixtures - (3)
* Find the conditions for optimum of the likelihood - For covariinc%
functions 2y = N Z (2 X% = 18 %y = 1)
— Set the partial derivatives of In p(X T, W, Z) k n=l N,
with respect to 1, X, 7 to zero — For the mixing coefficients 7, = N
— Forthe means we get * These results constitute no closed-form solution
13 N for the parameters of the mixture model
= Z X —
He N, nZ::,}/( "k) n where N, _;y(znk) - Responsibilities 7(z) depend on these parametersin a
B complex way
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Mixtures of Gaussians

Mixtures of Gaussians
EM for Gaussian mixtures — (5)

Example: EM algorithm
0 &

| B || e o
¢ ¥
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Mixtures of Gaussians
EM for Gaussian mixtures - (6)

* How can the results of K-means clustering be used
in the EM algorithm?

- Run the K-means algorithm in order to find a suitable
initialization of a Gaussian mixture model

- Covariance matrices can be initialized as covariances of the
clusters found by the K-means algorithm

- Mixing coefficients can be set as fractions of data points
assigned to the respective clusters
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Mixtures of Gaussians

EM for Gaussian mixtures - (7)
* EM algorithm: summary

- Given a Gaussian mixture model

— The goal is to maximize the likelihood function with
respect to the parameters (comprising the means and
covariances of the components and the mixing
coefficients)
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EM for Gaussian mixtures - (10)
* EM algorithm: main steps
- 4. Evaluate the log likelihood

In p(X Z)Zgln{gﬂkw(xnﬂklzk )}

- and check the convergence of either the parameters or the
log likelihood

— If the convergence criterion is not satisfied, return to step 2

TU/e
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Mixtures of Gaussians Mixtures of Gaussians
EM for Gaussian mixtures - (8) EM for Gaussian mixtures - (9)
* EM algorithm: main steps * EM algorithm: main steps
~ 1. Initialize the means 1, , covariances %, and mixing — 3. M step: Re-estimate the parameters using the current
. - ‘ —
coefficients 7y, and evaluate the initial value of the log respon3|b|lltlfs N
lielihood e = N*Z?(ZW ),
- 2. E step: evaluate the responsibilities using the current 1k ;1
.
parameter values AN ) e = W Zo )(x i Xx - ”ew)
)=t s
Znﬁ\f( ]) ; =N where Ny —Z?’ nk
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Mixtures of Gaussians

An Alternative View of EM
Relation to K-means - (1)
* There is a close similarity between the K-means
and EM algorithms

— K-means performs a hard assignment of data points to

clusters => each data point is associated uniquely with one
cluster

— EM makes a soft assignment

— K-means algorithm can be derived as a particular limit of EM
for Gaussian mixtures
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An Alternative View of EM
Relation to K-means - (2)

* Consider a Gaussian mixture model with
- Covariance matrices of the mixture components are ¢l

- & —variance parameter that is shared by all the
components, | — the identity matrix

- Consider ¢ as a constant,and ¢ — 0

- EM algorithm for the mixture of Gaussians will lead to the
following conclusions
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An Alternative View of EM
Relation to K-means - (3)
* Under the conditions mentioned above

— we obtain a hard assignment of data points to clusters, as in
the K-means algorithm, 7(an )% Mok

- Each data point is assigned to the cluster with the closest
mean

— K-means algorithm does not estimate the covariances of the
cluster but only the cluster means

— Ahard assignment version of the Gaussian mixture model
with general covariance matrices is called elliptical K-means

TU/e
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An Alternative View of EM An Alternative View of EM
Mixtures of Bernoulli distributions - (1) Mixtures of Bernoulli distributions - (2)
* So far — we focused on distributions of continuous * Bernoulli distribution
variables described by mixtures of Gaussians ~ Consider a set of D binary variables x;, where i =1,....D,
each of which is governed by a Bernoulli distribution with
* Now - consider mixture of discrete binary parameter £;:
variables

D
_ % (1 _ o, \ex)
— described by Bernoulli distributions p(x‘")_l;[”i (1 ﬂ.)

— This model is called latent class analysis . .
where X = (X, % )" and 1= (g4, 215)
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An Alternative View of EM An Alternative View of EM
Mixtures of Bernoulli distributions - (3) Mixtures of Bernoulli distributions - (4)
Example: Example:

EM results for a three components mixture model;

binary images of handwritten digits 2", “3” and “4” !
4 parameters for each component of the mixture model

The complete data set is 600 images

For comparison: single distribution a
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Example of EM Example of EM
Image segmentation - (1) Image segmentation - (2)

Original and smoothed images

— Model the joint distribution of color and texture features
with a mixture of Gaussians

— Use EM to estimate the parameters of this model

— The resulting clusters provide the segmentation of the
image

Image from Ch. Carson et al, Blobworld: image segmentation using expectation-maximization
and its application to image querying, IEEE Transactions on PAMI, Vol. 24, Num. 8, August 2002
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Example of EM
Image segmentation - (3)
Color (top row of images) and texture (bottom row) features

Image from Ch. Carson et al, Blobworld: image segmentation using expectation-maximization
and its application to image querying, IEEE Transactions on PAMI, Vol. 24, Num. 8, August 2002
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Example of EM

Image segmentation - (4)

The result of clustering the feature vectors into 2, 3, 4, 5
Gaussian clusters using EM

Image from Ch. Carson et al, Blobworld: image segmentation using expectation-maximization
and its application to image querying, IEEE Transactions on PAMI, Vol. 24, Num. 8, August 2002
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Principal Component Analysis
Introduction - (1)

* So far — we discussed probabilistic models having
discrete latent variables, such as mixture of
Gaussians

* Now - explore models in which some or all of the
latent variables are continuous
— Motivation: property of many data sets — data points can be
represented by fewer dimensions than those in the original
data space
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Principal Component Analysis
Introduction - (2)

* Consider an artificial data set

- constructed by taking images of digits, represented by
64x64 pixel grey-scale image,

- and embedding them in larger images of size 100x100 by
padding with pixels having the value 0

— Location and orientation of digits is varied at random

64
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Principal Component Analysis
Introduction - (3)

* Synthetic data set

- multiple copies of digitimages where the digit is randomly
displaced and rotated within some larger image field

> 53

Image size: 100x100 = 10000 pixels
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Principal Component Analysis
Introduction - (4)

* Resulting images
- Represented by a point in the 10000-dimensional data space

- However, across a data set of these images, there are only
three degrees of freedom of variability

- vertical translation
- horizontal translation

— Intrinsic dimensionality is three

66
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Principal Component Analysis
Introduction - (5)

* Translation and rotation parameters in this example
- latent variables

- because we observe only the images and are not told
which values of the translation or rotation variables where
used to create them

- Real digit image data => more degrees of freedom
— Scaling, handwriting variability
— but still smaller amount than the data set dimensionality
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Principal Component Analysis
Introduction - (6)

* Such latent variables can be used for
- data compression
— density modeling
— data modeling
- select a point according to some latent variable
distribution

- generate an observed data point by adding noise, drawn
from some conditional distribution of the data variables
given the latent variables
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Principal Component Analysis — (1)

* PCA (Principal Component Analysis)

is widely used for
— dimensionality reduction
— lossy data compression
— feature extraction
— data visualization
* Also known as Karhunen-Loéve transform
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Principal Component Analysis - (2)

* Two definitions of PCA (give rise to the same
algorithm)

- Orthogonal projection of the data onto a lower dimensional
space (principal subspace), such that the variance of the
projected data is maximized

— Linear projection that minimizes the average projection cost,
defined as the mean squared distance between the data
points and their projections
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Principal Component Analysis - (3)

PCA seeks a space of lower /
dimensionality, denoted by the x5 i
magenta line, such that the / \
orthogonal projection of the data 5

points (red dots) onto this

subspace maximizes the variance '\/‘\.
of the projected points (green dots) g
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Principal Component Analysis - (4)

N

Alternative definition of PCA: Xn G

minimize the sum of squares of the /

projection errors (blue lines) Xn
>/"\.
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Principal Component Analysis - (5)

* PCA steps
- Evaluate the mean
- and the covariance matrix of the data set

- Find M eigenvectors of the covariance matrix that
correspond to M largest eigenvalues

* What are the eigenvalues and eigenvectors?
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Principal Component Analysis - (6)

* Eigenvalue and eigenvector

- Given a linear transformation A, a non-zero vector X is
an eigenvector of A if it satisfies the eigenvalue
equation Ax = Ax for some scalar A

- The scalar A is called eigenvalue of A corresponding
to the eigenvector x

(source: http:/fen.wikipedia.org/wiki/Eigenvector )

Adv. Topics MMedia Vid. Cod. /

T U PAW-SZ-EB /2016
€@ racee sesven

5LSHO/ Module 8 Classif. | “%, VA

75
Principal Component Analysis - (7)

Geometrically the eigenvalue ¥
equation means that under the ]
transformation A eigenvectors do AX = Dhx
not change their direction. ¥

X |
The eigenvalue A is simply the |
amount of "stretch” or "shrink" to
which a vector is subjected when
transformed by A. 0 < X

(source: http://en.wikipedia.org/wiki/Eigenvector )
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Principal Component Analysis ®
Applications - (1)

* PCA approximation to a data vector x,,
M
X, = X+Z(x:ui —XTui)Ji
i=1

— where X - mean of the data set,

- U; — eigenvectors of the covariance matrix for the
original data set {X.}

— M = number of principal components
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Principal Component Analysis
Applications - (2)
* Example: PCA reconstruction obtained by
retaining M principal components
- As M increases, the reconstruction becomes more

accurate
— It becomes perfect when M = D = 28x28 = 784
Original M=1 M =10 M =50 M =250

31(3][31][3][3
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Principal Component Analysis
Applications - (3)
* Example: PCA for
human face recognition
- Eigenfaces - eigenvectors
used for human face
recognition
- Obtained by PCA applied
to a set of images of ’?
human faces -
(source: http://en.wikipedia.org/wiki/Eigenvector )
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Principal Component Analysis ”

Autoassociative neural networks - (1)
* Neural networks for unsupervised learning
- can be used for dimensionality reduction

- use the same number of inputs and outputs D and M
hidden layers, with M < D

— Input vectors and targets for training are the same => the
network learns to map each vector onto itself by
minimizing the error (w — network parameters, weights)

EW) = 5 DIy, w) - xf
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Principal Component Analysis
Autoassociative neural networks - (2)

Autoassociative multilayer

perceptron with two layers Tp

of weights

Network is trained to map inputs
input vectors onto :

themselves by minimization
of sum-of-squares error !

Itis equivalent to PCA
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Summary and conclusions - (1)

* K-means clustering

— can be used for segmentation, unsupervised
classification

- simple, easy to implement

— assigns one data point to one cluster, no soft
assignment
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Summary and conclusions - (2)

* Mixture of Gaussians

— useful for modeling probability densities, allows flexibility
necessary for it

- parameters are estimated using EM algorithm

* EM algorithm
— iterative, does not require a closed-form solution
— estimates parameters of mixture models
— can be used for segmentation (see slides 59-62 )
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Summary and conclusions - (3) References
+ PCA — Christopher M. Bishop, “Pattern Recognition and Machine
— provides principal components for a data set Learning’, Springer, 2002
. . . . - Chapter 9
— successfully used for dimensionality reduction (see
. - Chapter 12
eigenfaces)
— assumes high signal-to-noise ratio
large variance => important dynamics
g y!
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