TOWARDS REAL-TIME MPEG-4 SEGMENTATION:
A FAST IMPLEMENTATION OF REGION-MERGING

Dirk Farin and Peter H.N. de With

farin@ti.uni-mannheim.de / dewith@ti.uni-mannheim.de

Dept. Circuitry and Simulation (Fac. Comp. Engineering), University Mannheim
B 6,26 D-68131 Mannheim, Germany

We describe region merging as a flexible spatial segmentation algorithm
and introduce a new heuristic to considerably speed up the computation.
For further acceleration of the computation, a quadtree decomposition is
carried out as a preprocessing step.

1 INTRODUCTION

The emerging MPEG-4 standard is based on a new paradigm for image cod-
ing. Instead of coding the picture as a rectangular array of samples, the image
is treated as a collection of several independent objects, having arbitrary shape
(contours) and motion. These objects can be compressed and manipulated inde-
pendently, leading to so-called object-oriented coding. This approach not only
promises higher compression ratios than MPEG-2, but it also allows content-
based access and interactive composition of video sequences at the system level.

When adopting this view, a principal problem at the encoder side is the
automatic segmentation of natural video sequences into semantically meaningful
video objects. This is a recent field of research where a number of techniques have
been investigated. Current approaches can be classified into spatial and temporal
image segmentation techniques.

In this paper we describe region merging as a spatial segmentation technique
and present an efficient preprocessing step for improving the computation time.
Furthermore, we give an additional heuristic that considerably speeds up the
merging process.

2 REGION MERGING

With region merging, the objective is to group input image pixels to regions
which are similar with respect to a predetermined criterion. The algorithm pro-
ceeds by sequentially merging the two most similar neighbouring regions. The
merging process stops when no more regions are found with sufficient similarity,
or the minimum number of regions is reached. This stop condition is needed to
avoid that the algorithm ends with the whole image as one region.

Region merging can be viewed as a graph-node merging process where the
nodes represent, regions of pixels and the edges indicate neighbourship. We assign
edge weights to the edges to represent the similarity between adjoining regions.

2.1 FORMAL DEFINITION OF THE ALGORITHM

Let P = {p;} be the set of pixels in the input image with corresponding
luminance f(p;). Furthermore, let a neighbourship-relation n(p;, p;) = true iff p;
and p; are neighbours; however n(p;, p;) = false.

The input of the region-merging algorithm is a set of regions R = {r;} with
ri CP,Jr; =P and r;Nr; = O for i # j. The way these regions are obtained
may vary as follows. They can be the result of a preceding segmentation step such
as watershed segmentation, they can be chosen arbitrarily (e.g. blocks of fixed
size), or in the extreme case, each input pixel can be considered as a separate
region.

The algorithm first builds a neighbourhood graph G = (R, E) with edges
E = {(ri,7;)|3pperimer; (P, pr) = true}. Additionally, we define an edge weight
w on the edges w: E'— R which describes a measure of similarity of the regions
adjacent to the edge (in our paper, smaller values of w correspond to more similar
regions). The definition of the edge weights (i.e. the merging criterion) is the
crucial part of the algorithm, directly affecting the quality of the segmentation
result.

Region merging is a greedy algorithm that follows the intuitive process to
continuously merge the two most similar regions into a single region. Merging
stops when the lower bound of regions #r,,;, is reached or the minimum edge
weight exceeds a threshold w,,.;. The algorithm is outlined in Algorithm 1 and
illustrated in Figure 1.

Algorithm 1 Basic merging algorithm

1 while |R| > #7min do
2 €min = (15, 7k) ¢ argminw(e)

eck
ﬁw(emm) > Wmaz thﬂ STOP ﬁ
Create new region r, < 1; Uy
Insert new edges E < EU (Epew = {(rn,7:) | (rj,7:) € EV (rg,75) € E})
Remove old edges E <— EN{R\ {r;;rc}} x {R\{rj; re}}
Remove regions 7; and 7, R < R\ {rj; ¢}
foreach e € F,.,, do Update edge weight w(e) end
end

© 00 ~J O U i W

rn

(a) initial regions (b) merging step 1 (c) merging step 2

Figure 1: First two steps of a region-merging process. Thicker edges represent
more similar regions.

2.2 MERGING CRITERIA

A simple similarity measure that nevertheless obtains good results is to cal-
culate the difference of the mean luminance of two adjacent regions:

w(e= (rj,m)) = ‘(! Zf(p)) - (ﬁZf(P))‘

|rj‘ pErT; PETE

An advantage of this measure in applications aiming at real-time execution is its
simplicity, because updating the edge weights after a merging step can be easily
accomplished. If we store for each region r; the sum of the luminance of all pixels
U(ri) = 3 _per, f(p) and the region size s(r;) = |r;|, the edge weights calculate as:
il

w(e: (Tj,T‘k)) = 5 sl

The nice property of this representation is, that after merging the two regions
r; and 7y into the combined region 7, we only have to set I(r,) = I(r;) + (1)
and s(r,) = s(r;) + s(rx) and update the edge weights accordingly. This measure
can be extended to all three color components (e.g. Y,Cb,Cr) and combined into
a weighted sum. We used this measure with weighting (3/5;1/5;1/5) in the
generation of the results in Figure 2.

Unfortunately, the mean-luminance difference measure also has several draw-
backs; consider for example the image in Figure 3a. The regions on both sides of
the boundary have exactly the same mean luminance, but clearly do not match
as good as the two regions in Figure 3b. Nevertheless, the similarity measure
evaluates to exactly the same value.

A better criterion is to examine the common boundary between two re-
gions and define a similarity measure favouring an equal luminance distribu-
tion along the common boundary. To formalize this measure, let the sequence

(a) input image (claire) (b) 120 regions remaining (c) 5 regions remaining

Figure 2: Region merging applied to test image ‘claire’.

(a) gradients with (b) gradients with same
opposite directions direction

Figure 3: Gradients along a region boundary.

of N pairs of opposing pixels along the boundary between region r; and r; be
bi(e) = (Pa,pb), 1 <@ < N (with e = (rj,7) and p, €7, pp €7%). Now we can
define a similarity measure e.g. as follows:

w(e) = Y [f(pa) = f(ps)l, With pe,ps given by bi(e).

1<i<N

Other similarity measures are possible as well: e.g. region luminance variance,
similar texture, a well-shaped boundary of the hypothetically merged regions, or
similar motion of the regions. To exploit the advantages of different measures,
it may be attractive to switch to another merging criterion at some point in
the merging process. For example, one could start with a pure spatial merging
criterion, like mean-luminance difference, and switch to a similar-motion criterion
when the regions have grown to a reasonable size.

The motivation for switching the merging criterion is that it can improve
the segmentation results. The mean-luminance difference measure works well in
small local areas, but it fails on larger regions, because the region description is
too simplistic. On the other hand, motion as a merging criterion works well for
larger regions, where motion can be determined with high accuracy. However,
a motion criterion fails on small regions, because the features contained in the
region may not be sufficient for an accurate motion estimation.

2.3 REDUCING THE COMPUTATIONAL COMPLEXITY

Let n = | R| be the number of input regions. Usually segmentation stops when
only a small number of regions is remaining. Thus, the total number of merging
steps performed is O(n). In a simple implementation where edges are stored in an
unsorted array, step 2 in Algorithm 1 takes O(n) time. In the worst case, shown
in Figure 4a, steps 5,6 and 8 each require O(n) time when the comb-shaped region
is merged. The overall complexity is therefore O(n?).

As the number of merging steps
is fixed, the only way to decrease

computation time is to reduce the

number of edges that have to be up-

(T TTTT]
LTI
dated in each step. If the regions HHHHH}
would grow in a more balanced way H}HHHH

(as shown in Figure 4b), the number
of outgoing edges of each region be- (a) worst-case (b) heuristically
comes more or less constant. Conse- pattern favoured pattern

quently, steps 5,6 and 8 would run in

O(1) time. Figure 4: Worst case pattern for region
We have achieved a more bal- merging and pattern that we want to

anced growing of regions by adding favour with the heuristic.

a secondary criterion to the edge

weights. For this purpose, we use a new weight w’ which favours the merging

of small regions in undecided cases (w(e;) = w(e;)). In total, we define

w'(e; = (ra, 1)) < W' (&5 = (re, 7)) <=
w(e;) < w(ej) V (wle:) = w(e) Alral +[rs] < |re| + [ral).

Since w' differs from w only by a secondary weight, this approach does not degrade
the segmentation quality in any way.

However, this proposal alone is not sufficient for a significant speedup, as
finding the minimum edge weight (step 2) still requires O(n) time. By storing
the edges in a heap data-structure, sorted by edge weights, we can reduce the
time spent for finding the edge to O(1), but on the other hand enlarge the time
spent for updating the edge weights (step 8) again to O(logn), since the heap has
to be kept sorted. However, this results in an overall computation time of only
O(nlogn)'. As the edge weights mostly will not change much in a merging step,

!Note that by using a Fibonacci-heap implementation instead, we could reduce overall com-
putation time to O(n). But this implementation is so complex that it is unlikely to be faster
in practice.

the number of levels that an edge has to be moved in the heap up- or downwards
will be small. Therefore, the actual time spent in step 8 can even be considered
as constant, leading to a linear-time algorithm for ordinary picture material?.

2.4 EXPERIMENTAL RESULTS

Table 1 shows the speed improvement obtained when using the new heuristic
criterion-extension on region sizes. Merging started at the original pixel level and
the merging criterion was a weighted sum of the difference of the mean values of
the luminance and chrominance components in the regions.

image sequence | dimension | standard-heap | heuristic-heap

kettle 352x288 76.19s 2.71s
coastguard 352x288 6.99s 2.74s
foreman 352x288 5.20s 2.80s
claire 352x288 4.70s 2.62s

Table 1: Computation time of region merging (starting with single pixel regions).
Number of input regions: 101376, input edges: 202112. Calculation has been
performed on an Intel Pentium-III 550 MHz.

Note that images that generally required a long computation time, give the
fastest results with the new criterion. This phenomenon occurs because many
edges with equal weights appear during the computation of these images. This
results in large regions and thus slow computation, using the standard implemen-
tation. In contrast to this, our heuristic applies more often in these cases and
the region sizes are growing more balanced, which results in reduced computation
time.

2.5 QUADTREE-DECOMPOSITION PREPROCESSING AND RESULTS

Another way to enhance performance is to start with larger regions rather
than taking the original input pixels. If this preprocessing step is considerably
faster than the region-merging process, an overall speed improvement can be
achieved. One way to get larger input regions is to perform a quadtree decompo-
sition of the image, as shown in Algorithm 2. In practice, this algorithm can be
implemented most easily as a recursive procedure. Some degree of freedom lies in
the definition of the function uniform: R— bool in step 2. We have used a metric
that coincides with the mean-luminance difference measure from Section 2.2. The
definition equals: r; is uniform <= (maxpe,, f(p) — minye,, f(p)) < T (with T

2Note that steps 5 and 6 can be combined by mostly reusing the data structures of the edges
to be removed for the new edges. Therefore, these steps do not require O(logn) time.

being a fixed threshold). It can be seen that this definition represents a simple
calculation.

Algorithm 2 Quadtree decomposition

1 R={n}={P}
2 while 3r; with uniform(r;) = false do

3 Subdivide r; into 4 subregions 74, 14, 7, Tq
4 R« (R\{ri}) U{ra;srp;re; ra}
5 end

To initialize the region-merging algorithm, we need to build the neighbour-
hood graph of our quadtree decomposition. To quickly find all necessary edges,
we label all pixels to the bottom and the right of a region with a region ID
whenever a uniform region is found (see Figure 5a). To determine the required
edges, we scan for each region the pixels one to the left and one to the top of its
boundary. Whenever the region ID found changes, we generate an edge between
the two regions. Take region ‘G’ for example: scanning the top row, we first find
region ID ‘6’ which is a new ID. Thus, an edge (6 ;) is generated. The next
pixel is labeled ‘6’ too, so that we do not create a new edge. We advance to ‘7’,
which is different from the last ID, so a new edge (7; G) is generated. Finally,
an edge (8; G) is constructed and the same algorithm applies to the left side,
resulting in the edges (4; G), (D ; G) and (F'; G).

Table 2 shows the computation times when the quadtree decomposition is
added as a preprocessing step. As compared to Table 1, a significant reduction

Wl

N
N
I~~~ TININ NN
W)
W)
W)

i
1t

Kellelofle 0
>/l

A
D
FIFIGIGIGIGIGIGIG

mmOO>
OOOOOOG

B[BB[BIE

(a) Labeling of pixels at (b) Result of decomposition
the edge of regions for step applied to claire sequence.
efficient neighbourhood-

graph construction.

Figure 5: Quadtree decomposition preprocessing step.

of the computation time is obtained with comparable results. The accuracy and
computation time are both depending on the threshold 7" in the function uniform.
We have to balance between a small value of T, giving exact segmentation results,
and a larger 7', lowering the overall computation time.

image sequence | avg. |R| | avg. |E| | g.-tree+standard | q.-tree+heuristic

kettle 13057 28850 1.04s 0.39s
coastguard 38552 83529 1.31s 1.16s
foreman 24853 54695 1.32s 0.73s
claire 5688 12832 0.26s 0.19s

Table 2: Computation time of region merging preceded by the decomposition
stage. Also listed are the average number of regions and edges after the quadtree
decomposition step. Calculation has been performed on an Intel Pentium-III
550 MHz.

3 CONCLUSIONS

We described region merging as a spatial segmentation algorithm and illus-
trated its flexibility by using different merging criteria. An improvement has
been achieved by including region sizes into the merging criteria. This heuristic
measure favours balanced region growing, leading to a significant reduction of the
computation time when it is combined with a heap data-structure implementa-
tion.

A further reduction of computation time has been obtained by adding quadtree
decomposition as a preprocessing step. We have presented an efficient algorithm
to transform the quadtree data structure into a neighbourhood graph, thereby
initializing the input data structure for the subsequent region-merging step. The
resulting computation time is mostly below one second per CIF-resolution frame
and makes region merging more attractive for real-time applications.

REFERENCES

[1] F. Moscheni, S. Bhattacharjee, “Robust Region Merging for Spatio-Temporal Segmenta-
tion”, Proceedings of International Conference on Image Processing ICIP’96, Vol. 1, 1996.

[2] F.Moscheni, F. Dufaux, “Region Merging Based on Robust Statistical Testing”, SPIE Proc.
Visual Communications and Image Processing '96, Orlando, Florida, USA, March 1996.

[3] T.Kurita, “An Efficient Clustering Algorithm for Region Merging,” IEICE Trans. of Infor-
mation and Systems, Vol. E78-D, No.12, 1995.

