Introduction to Medical Imaging
(5XSA0)
Module 5
Segmentation

Jungong Han, Dirk Farin, Sveta Zinger
(s.zinger@tue.nl)

Outline
- Introduction
- Color Segmentation
 - region-growing
 - region-merging
 - watershed
- Background Subtraction
 - background generation
 - change detection
- Model-based Object Detection
 - graph model

Applications of Object Segmentation
- Surveillance
 - detect people in restricted areas
 - detect abnormal behavior (motion pattern)
- Video/Image Analysis
- Video Editing
- Intelligent Video Databases
 - object classification
- Sports Analysis
- Object-Oriented Video-Coding (MPEG-4)

Definition of Object Segmentation
- The object definition and the segmentation algorithm to use depends on the context!
- There is no such thing as “a general segmentation algorithm”
- Possible definitions:
 - regions with uniform color → color segmentation
 - regions with uniform texture → texture segmentation
 - regions with uniform motion → motion segmentation

Definition of Object Segmentation
- It’s your turn. Segment this image!

Definition of Object Segmentation
- Central question: what is an object???
- Semantic problems of object definition:
 - shadows
 - occlusions
 - reflections
 - object status change (parking cars)
 - small movements (waving trees)
 - hierarchical objects (man in car)
Color Segmentation: Example (1)

* Example medical application:
 - count number of blood cells

input image
binarized image separate connected cells (requires further model knowledge)

Color Segmentation: Example (2)

* Preprocessing for special applications
 - colors help to detect objects and markers

input image segmentation

Images taken from CMVision realtime color segmentation library

Color Segmentation: Example (3)

* Color segmentation on natural images:

input image segmentation

Texture Segmentation

* Group regions based on texture features.

* Usual approach:
 - extract texture descriptors (e.g., Gabor filter coefficients)
 - cluster similar descriptors (comparable to color segmentation)

Background Subtraction

* Assume that a pure background image is known
 - detect changes between input image and background image (Change Detection)

Manual Segmentation

* Interactive segmentation
 - user controls the segmentation process
 - computer determines accurate object boundaries

* Edge based techniques
 - intelligent scissors

* Region based techniques
 - marker based watershed

Selecting Objects with Freehand Sketches
Evaluating the Segmentation Result

- oversegmentation
 - result has more regions than expected
- undersegmentation
 - result has less regions than expected

Point detection

- Look for a point that is different from its neighborhood
- Apply an isolating mask to calculate:
 \[R = w_1z_1 + w_2z_2 + \ldots + w_9z_9 \]
- A point is detected at the center of the mask if \(|R| \geq T\)

where \(T\) is a threshold

Line detection

- Masks responding to lines of different orientations:
 - Thresholded absolute values of \(-45^\circ\) detector
 - Absolute values of \(-45^\circ\) detector (zoomed)

Outline

- Introduction
- Color Segmentation
 - region-growing
 - region-merging
 - watershed
- Background Subtraction
 - background generation
 - change detection
- Model-based Object Detection
 - graph model

Color Segmentation: Region Growing (1)

- Start a new region with a seed pixel
- Consider neighboring pixels
 - if their color is similar to the mean region color, add pixel to the region
 - continue growing until no more pixels can be added to the region

Color Segmentation: Region Growing (2)

- Implementation
 - input: seed \((x_s,y_s)\), image \(I(x,y)\)
 - insert \((x_s,y_s)\) into queue of positions \(Q\)
 - region color \(C = I(x_s,y_s)\)
 - while \(Q\) not empty
 - extract \((x,y)\) from queue
 - if \(||I(x,y) - C|| < \tau\)
 - add neighbors of \((x,y)\) into \(Q\)
 - update region color \(C\) with \(I(x,y)\)
Color Segmentation: Region Growing (3)

* Regions have already been defined
\[R = \bigcup_{i=1}^{S} R_i \quad R_i \cap R_j = \emptyset \quad i \neq j \]

* We hope
\[H(R_i) = \text{TRUE} \quad i = 1, 2, ..., S \]
\[H(R_i \cup R_j) = \text{FALSE} \quad i \neq j, \quad R_i \text{ adjacent to } R_j \]

Color Segmentation: Region Growing (4)

* Seed pixels can be
 -- placed manually, or
 -- arbitrarily chosen from the unprocessed pixel

Color Segmentation: Region Growing (5)

* Segmentation result is depending on
 -- similarity threshold
 -- choice of seed pixels
 -- order in which seed pixels are processed
 -- algorithm implementation (order in which neighboring pixels are processed)

Color Segmentation: Region Merging (1)

* Alternative approach: Region Merging
 -- Start with a set of regions (obtained by another algorithm)
 -- Consecutively join the two most similar neighboring regions

Color Segmentation: Region Merging (2)

* Data-structure:
 -- neighborhood graph of image regions
 -- each node represents a region
 -- graph edges denote adjacency
 -- they are attributed with the region similarity

Color Segmentation: Region Merging (3)

![Diagram of strong and weak similarity in region merging]
Color Segmentation: Region Merging (4)
* Several merging criteria are possible
* Simple model:
 - describe region color \(l_i \) by average luminance.

 \[
 l_i = \frac{1}{r_i} \sum_{(x,y) \in r_i} I(x,y)
 \]

* Merging criterion:
 - mean: difference of mean region luminances
 \[
 \text{mean}(l_i) - \text{mean}(l_j)
 \]

* Difference of mean luminances does not take region size into account

Color Segmentation: Watershed (1)
* The watershed algorithm
* Fast color segmentation algorithm
* Generally gives oversegmented results on natural images
* Well-defined output
* Often used as preprocessing operation
 - quickly convert a pixel image into a region-level description to speed-up further processing
* Variant: watershed with manually placed markers

Color Segmentation: Watershed (2)
* Algorithm principle:
 - apply gradient filter on input image and work on the resulting edge image
 - search for local minima in edge image and initialize a new region for each minimum
 - extend regions like follows:
 Watersheds are built where water from different ‘lakes’ meets

Color Segmentation: Watershed (3)
* input image
* edge profile of input image

Color Segmentation: Watershed (4)
* water begins to rise from local minima
* build watershed when different lakes touch
* water continues to rise; build more watersheds

Color Segmentation: Watershed (5)
* Typical result:
 - Many regions because camera noise generates many local minima
Color Segmentation: Watershed (6)

- Noise in flat areas generates too many local minima
- Small noise regions can be avoided by clipping gradients to a minimum value

Color Segmentation: Watershed (7)

- Result with clipped gradient strength:

Color Segmentation: Watershed (8)

- Variant: manual watershed
- Instead of starting to flood from local minima, start flooding from markers

Color Segmentation

- Summary
 - Region Growing
 - easy implementation, low-quality results
 - Region Merging
 - difficult implementation, flexible control of segmentation process, high-quality results
 - Watershed
 - easy and fast implementation, predictable result, severe over-segmentation
 - no threshold to influence result (except gradient clipping)
 - Result only sufficient for specialized applications

Outline

- Introduction
- Color Segmentation
 - region-merging
 - watershed
- Background Subtraction
 - background generation
 - change detection
- Model-based Object Detection
 - graph-models

Thresholding

- Simple and computationally efficient
- Threshold selection uses intensity information ➔ histogram
- Example: bimodal histogram
Optimal Thresholding

- What value of T will give us the best segmentation?
- Gonzalez and Woods:
 - Initialize T (e.g., halfway between min and max)
 - Iteratively set $T = 0.5(\mu_1 + \mu_2)$, where μ_1, μ_2 the mean values of pixels with value larger or smaller than T, respectively
 - Until T converges

Bkg. Subtraction: Principle - (1)

- Assumption: background is static
- Input image is compared with background image
 - if the difference is small: background content
 - if the difference is large: foreground object
 - difference is generally not zero due to noise in the sequences
- For some applications, the background image can be captured separately
- For other applications, it must be synthesized from the input sequence

Bkg. Subtraction: Principle (2)

- Background image generation
- Change detection

Bkg. Sub: Background Generation (1)

- Temporal median filter
 - good performance can be achieved
 - relatively low computational complexity
- $B(x) = \text{median} (I_1(x), I_2(x), \ldots, I_{N\times K}(x))$

Bkg. Sub: Change Detection

- We have
 - current input frame I_i
 - background frame I_b
- We denote the image color channels as $I_i(x, y, z)$ and the vector combining all channels as I_i
- Detect object, e.g., if r
- r is a threshold that depends on the noise level
Bkg. Sub: Difference Metrics

- What metric should be used for the image difference?
 - greyscale difference
 - sum of squared differences of RGB channels
 - sum of absolute differences of RGB channels
 - ... in YUV color-space
 - ... something else (L*u*v color-space, non-linear difference functions?)

Distribution of Color Differences (1)

```
Distribution of difference vector d between input color I, and background color I_b
```

Distribution of Color Differences (2)

- Each difference function defines a decision boundary
 - here: Euclidean distance defines sphere
 - inside sphere: background, outside: foreground

Distribution of Color Differences (3)

- Greyscale difference only: Defines slice in Y-dimension
- Better classification could be obtained by integrating color

Distribution of Color Differences (4)

- Euclidean distance in YUV space
- Defines sphere
- However, background distribution has lower variance in U,V dimensions

Background Subtraction

- Summary
 - change detection between input frame and background frame
 - independent pixel classification
 - RGB, YUV color difference
 - greyscale difference
 - sum of squared difference
 - Mahalanobis distance
 - classify groups of pixels
 - joint probability has less overlap
 - results are more robust to noise
Outline

- Introduction
- Color Segmentation
 - region-merging
 - watershed
- Background Subtraction
 - background generation
 - change detection
- Model-based Object Detection
 - graph model

GM Algorithm: Principle (1)

- How can we tell the computer what objects we want to extract?

GM Algorithm: Principle (2)

- The same “object” can show in many deformed appearances
- Objects can be partly occluded

GM Algorithm: Principle (3)

- Idea: Describe objects with graph-based models
- The graph consists of:
 - nodes for the essential object regions
 - nodes have attributes with region features (color, size)
 - edges denote spatial relationships between regions

GM Algorithm: Principle (4)

- Generation of the object model:
 - user takes example image and places markers into essential regions. Apply marker driven watershed
 - user specifies spatial relationships between regions that must be fulfilled

GM Algorithm: Principle (5)

- sample object image
- model graph, region features
- automatic segmentation
- feature extraction
- matching
Graph-Model: Graph Matching (1)

- **Graph Matching**
 - model graph \((V_M, E_M)\)
 - segmentation graph \((V_S, E_S)\)
 - mapping
 - cost function
 - determine

Graph-Model: Graph Matching (2)

- Matching cost function consists of
 - **Node costs**
 - similarity of regions (color, shape, ...)
 - **Edge cost**
 - relations between regions (distances, size ratios)

Graph-Model: Result (1)

- **extension**: 1:N matching

Graph-Model: Result (3)

- **1:N matching**

Graph-Model based Object Detection

- **Summary**
 - algorithm to detect general objects
 - object is described with attributed graphs (only tree-shaped)
 - manual definition of model graph
 - automatic color segmentation to obtain segmentation graph
 - efficient graph-matching algorithm to detect model graph in segmentation graph

References (1)

- **Color segmentation**

- **Background subtraction**
References (2)

- **Intelligent Scissors**

- **Segmentation based on feature clustering**