
2-4-2019

1

Electrical Engineering / VCA research group

Sander Klomp and Peter H.N. de With

5LSM0: Convolutional neural networks for computer vision 

Module 13:  Efficient DL and Cases with Complexity Issues

Module outline

1. Introduction and Motivation 

Use case 1.1: Autonomous Driving (why we need Efficient Deep Learning)

• Overview, Perception and its challenges

Use case 1.2: Healthcare: early cancer detection in VLE signals

• Sensing principle and example solution concept

2. Efficient Deep Learning

• About “efficiency”

• Small neural networks

• Finding the right architecture

• Deep compression
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Source: These slides are adapted from Forrest Landola’s keynote, EI2019, Burlingame, 2019

Overview

Use Case 1: Autonomous Driving
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Autonomous driving: What is it?

4

Where are we now?
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Driver Assist versus Autonomous Vehicles

Level 1-3: Driver assistance

L1: Individual assistance functions

• Automatic emergency braking

• Lane keeping, lane assist

• Parking assist

L2: combining them

L3: vehicle takes over driving functions, but 

driver must be ready to take over

5

Level 4 – Level 5 Autonomy

Levels of Full Autonomy

Level 4

• Full autonomy in constrained 

situations

Level 5

• Fully autonomous in all situations

This can 

already 

benefit 

from CNNs!
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AV System Overview

6

SENSORS

PERCEPTION &

PREDICTION

MAPPING

ENVIRONMENTAL

MODEL 

MOTION PLANNING

&

ACTUATION/CONTROL
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What does a car need to see?

7

Object Detection

Note: above visuals are an artist’s rendering created to help convey concepts. They should not be judged for accuracy.

Vehicle (99%) Vehicle (98%)
Vehicle (100%) Vehicle (100%) Vehicle (99%)

Cyclist 

(99%)

Cyclist 

(99%)

Pedestrian 

(99%) Pedestrian 

(99%)

What does a car need to see?
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Distance

Note: above visuals are an artist’s rendering created to help convey concepts. They should not be judged for accuracy.

Vehicle (99%)

15m 
Vehicle (98%)

20m
Vehicle (100%)

10m 

Vehicle (100%)

14m

Vehicle (99%)

18m

Cyclist 

(99%)

16m 

Cyclist 

(99%)

14m 

Pedestrian 

(99%)

7m 
Pedestrian 

(99%)

7m 
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What does a car need to see?
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Object Tracking

Note: above visuals are an artist’s rendering created to help convey concepts. They should not be judged for accuracy.

Vehicle (99%)

15m

ID: 5 (95 frames)

Vehicle (98%)

20m

ID: 4 (140 

frames)

Vehicle (100%)

10m

ID: 1 (135 frames)

Vehicle (100%)

14m

ID: 2 (140 frames)

Cyclist 

(99%)

16m

ID: 6 (90 

frames)

Cyclist 

(99%)

14m

ID: 7 (95 

frames)

Pedestrian 

(99%)

7m

ID: 8 (60 

frames)

Pedestrian 

(99%)

7m

ID: 9 (60 

frames)Vehicle (99%)

18m

ID: 3 (140 frames)

What does a car need to see?
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Free Space & Driveable Area

Note: above visuals are an artist’s rendering created to help convey concepts. They should not be judged for accuracy.

Cyclist 

(99%)

16m

ID: 6 (90 

frames)

Cyclist 

(99%)

14m

ID: 7 (95 

frames)

Pedestrian 

(99%)

7m

ID: 8 (60 

frames)

Pedestrian 

(99%)

7m

ID: 9 (60 

frames)Vehicle (99%)

15m

ID: 5 (95 frames)

Vehicle (98%)

20m

ID: 4 (140 

frames)

Vehicle (100%)

10m

ID: 1 (135 frames)

Vehicle (100%)

14m

ID: 2 (140 frames)

Vehicle (99%)

18m

ID: 3 (140 frames)

What does a car need to see?

11

Lane Recognition

Note: above visuals are an artist’s rendering created to help convey concepts. They should not be judged for accuracy.

Cyclist 

(99%)

16m

ID: 6 (90 

frames)

Cyclist 

(99%)

14m

ID: 7 (95 

frames)

Pedestrian 

(99%)

7m

ID: 8 (60 

frames)

Pedestrian 

(99%)

7m

ID: 9 (60 

frames)Vehicle (99%)

15m

ID: 5 (95 frames)

Vehicle (98%)

20m

ID: 4 (140 

frames)

Vehicle (100%)

10m

ID: 1 (135 frames)

Vehicle (100%)

14m

ID: 2 (140 frames)

Vehicle (99%)

18m

ID: 3 (140 frames)

How does a car see? – A lot of cameras

12

Camera 

array
360° LiDAR

Stereo camera pairs

LiDAR

(and other sensors)

Sensors

• Cameras

• LiDAR

• Radar

• Ultrasonic
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Applying DNN to Integrated Sensor Data

Integrating

Multiple

Sensors

Point cloud

RGB-D image

Object Detection

Occupancy Grid

LIDAR

CAMERAS

RADAR

ULTRASONIC
(short-range)

Lane Segmentation

Object Tracking

P. Tomasello, et al. DSCnet: Replicating Lidar Point Clouds with Deep Sensor Cloning. arXiv, 2018.
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Challenges

Solving just perception already results in significant challenges

• Getting enough training data

• Generating useful data through simulation

• Domain adaptation of simulation data to the real world

• Utilizing sensor fusion (LiDAR, RADAR etc.)

• Accelerating training to cope with all this new data

• Handling high resolution images

• Getting more out of video (adding the temporal domain)

• Power and energy efficient nets

• Achieving ‘efficient’ inference
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Challenges

Solving just perception already results in significant challenges

• Getting enough training data

• Generating useful data through simulation

• Domain adaptation of simulation data to the real world

• Utilizing sensor fusion (LiDAR, RADAR etc.)

• Accelerating training to cope with all this new data

• Handling high resolution images

• Getting more out of video (adding the temporal domain)

• Power and energy efficient nets

• Achieving ‘efficient’ inference

15

Today’s focus

5LSM0 Mod 13: Efficient DL intro / Case 1 Autonomous Driving           SPS-VCA / April 2019 SK-PdW

Efficiency challenge: Computational cost 

Perception is the most computationally intensive part of the software!

16

BMW + Intel
https://newsroom.intel.com/news-

releases/bmw-group-intel-mobileye-will-

autonomous-test-vehicles-roads-second-

half-2017/

Audi
https://www.slashgear.com/man-vs-

machine-my-rematch-against-audis-new-

self-driving-rs-7-21415540/

Ford
http://cwc.ucsd.edu/content/connected-

cars-long-road-autonomous-vehicles
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Computation is expensive

• $250.000 to make a vehicle autonomous

• Tens of thousands due to computational 
power required

In short:

• We want to process a huge amount of data

• “Server in the trunk” is not desirable

• We need efficient CNN architectures!
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Source: Joost van der Putten, Slides  adapted from PhD project on VLE learning  2019

Overview

Use Case 2: Healthcare / Early detection of cancer with VLE 
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Algorithm for single-frame VLE snapshot classification
Prospectively gathered set of 111 snapshots (18 patients)

First focus on High-Grade Dysplasia (HGD) vs. Non-Dysplastic Baretts Esophagus (NDBE)

25 HGD

86 NDBE
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Volumetric Laser Endomicroscopy (VLE) Signal / 

VLS Signal / Region of interest (ROI) segmentation

Previously

Cropping from whole image.

Rotate image for optimal usage of area.

Labor intensive and will never incorporate all available data.

Idea: Algorithm for
automatic ROI (tissue) 
segmentation

5LSM0 Mod 13: Efficient DL intro / Case 2 Early detection of cancer       SPS-VCA / April 2019 SK-PdW20
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VLE examples and gold standard segmentations
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VLE Signal / Undefined lower boundary in various scans

Lower regions of the image have less signal

Ground-truth depth is somewhat arbitrary, however, upper boundary is clear

From previous work: most valuable information is found in approximately the top 200 pixels of the 

tissue
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VLE segmentation / U-net and custom loss function
U-net is a widely used CNN for medical segmentation problems (Ronneberger et al., 2015)

Multi-scale approach

End-to-end learning

A custom loss function:

Less penalty for misclassifying 

lower regions

Normal penalty for the top 200 pixels

Harsh penalty for misclassifying 

area immediately above ROI
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VLE Signal / ROI segmentation results

Compared results to gold standard segmentations of three assessors

Quantitatively compared segmentations assessor segmentations

System within inter-observer variability

Submitted results to MIDL 2018, Amsterdam

Basic model Weighted model Assessor 2 Assessor 3

Assessor 1 0.95 0.97 0.96 0.96

Assessor 2 0.95 0.97 - 0.96

Assessor 3 0.95 0.97 - -

System vs. human Human vs. humanDICE scores

24 5LSM0 Mod 13: Efficient DL intro / Case 2 Early detection of cancer       SPS-VCA / April 2019 SK-PdW
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VLE Signal / ROI segmentation – Visual results
Snapshot Weighted gold standard System prediction
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Data pre-processing
Snapshots before laser marking

Region-of-interest selection

Automatic flattening of the ROI (simple / advanced)

Restricted to top 1 millimeter (≈170 pixels)
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Conventional CAD methods - 1

Evaluated most promising features from earlier ex-vivo work*

Optimal hyperparameters also from ex-vivo experiments*

Various widely-used (conventional) classification methods

SVM, Random Forest, AdaBoost, Naive Bayes, etc.

Three validation experiments

Leave-one-out cross-validation (LOOCV) on unbalanced set (25 HGD vs 86 NDBE)

4-fold cross-validation (4-fold CV) on unbalanced set (25 HGD vs 86NDBE)

(and other tests beyond the scope here) 

*F. van der Sommen et al. "Predictive features for early 

cancer detection in Barrett's esophagus using 

volumetric laser endomicroscopy." Computerized 

Medical Imaging and Graphics(2018).
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Conventional – 2 / LOOCV on unbalanced data set

AUC Sensitivity Specificity

Linear SVM 93.7 52.0 98.8

Random Forest 92.0 68.0 95.4

K-Nearest Neighbors 90.7 40.0 97.7

Naive Bayes 93.4 88.0 82.6

Discriminant Analysis 89.7 72.0 83.7

Non-linear SVM 85.2 36.0 97.7

Neural Network 89.0 64.0 90.1

Adaptive Boosting 89.3 72.0 89.5

Default operating points

Relatively low sensitivity due to low number of positives (#pos)

Operating point can be changed by changing the cut-off value / threshold
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• Less data: slightly lower scores and higher variability

• Largest effect on sensitivity (very low #pos)

Conventional – 3 / 4-fold Cross-Validation on unbalanced data set

AUC Sensitivity Specificity

Linear SVM 91.2 52.0 97.7

Random Forest 94.8 0.00 1.00

K-Nearest Neighbors 92.8 32.0 84.6

Naive Bayes 92.0 84.0 81.4

Discriminant Analysis 87.7 68.0 84.9

Non-linear SVM 85.8 36.0 98.8

Neural Network 89.2 60.0 94.1

Adaptive Boosting 90.1 64.0 93.0

Default operating points
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End-to-end Deep Learning for VLE classification

Useful information is found mainly vertically

Surface intensity

Layering

Calculate a dysplasia score for each A-line

Sufficient data for end-to-end learning!

Convolutional neural network with 1-D filters

DenseNet (Huang et al., 2017)

Reduced number of parameters!

Among other benefits..

n Conv [3 1]

BatchNorm

LRelu

n Conv [3 1]

BatchNorm

LRelu

n Conv [3 1]

BatchNorm

LRelu

n Conv [3 1]

BatchNorm

LRelu

N filter Densenet Module
Input [224 1 1]

8 filter Densenet module

Maxpool

32 Conv [3 1]

BatchNorm

LRelu

32 Conv [3 1]

BatchNorm

LRelu

8 filter Densenet module

Maxpool

16 filter Densenet module

Maxpool

32 filter Densenet module

Maxpool

32 fully connected layer

Dropout

16 fully connected layer

Dropout

Classification layer30
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Predicted A-line scores
Dysplastic Non-dysplastic
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Healthcare Use Case 2 / Early cancer detection take aways... 

Considering the OCT signal characteristics: noisy and buried patterns

Accurate segmentation required for finding the ROI suitable signal  

Deep Learning compares to the best-scoring conventional methods 

But:….adapt method to the nature of the scanning to reduce complexity!

Post-processing is also required, this is not discussed here … 

32 5LSM0 Mod 13: Efficient DL intro / Case 2 Early detection of cancer       SPS-VCA / April 2019 SK-PdW



2-4-2019

9

Hardware evolution

About computational cost
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The computation problem
• Won’t rapid GPU advancements just solve the computation problem for us?

34

Platform Computation

(TOP/s)

Year

NVIDIA K20 

[1] 3.50
(32-bit float)

2012

NVIDIA V100 

[2] 112
(16-bit float)

2018

Next-gen:

20 TOP/W 2500* 2020 (est.)
* Assuming half the power is spent on computation, and 

the other half is spent on memory and other devices.

[1] https://www.nvidia.com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v05.pdf

[2] http://www.nvidia.com/content/PDF/Volta-Datasheet.pdf (PCIe version)
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The computation problem
• Won’t rapid GPU advancements just solve the computation problem for us?

35

Platform Computation

(TOP/s)

Memory 

Bandwidth

(TB/s)

Computation-to-

bandwidth ratio

Year

NVIDIA K20 

[1] 3.50
(32-bit float)

0.208
(GDDR5)

17 2012

NVIDIA V100 

[2] 112
(16-bit float)

0.900
(HBM2)

124 2018

Next-gen:

20 TOP/W 2500* 1.800
(HBM3)[3]

1389 2020 (est.)

[1] https://www.nvidia.com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v05.pdf

[2] http://www.nvidia.com/content/PDF/Volta-Datasheet.pdf (PCIe version)

[3] https://www.eteknix.com/gddr6-hbm3-details-emerge/

• No!

• A new bottleneck: 

memory

• Defining “efficient” as 

only computations is not 

enough
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In case you still aren’t convinced

• Besides future-proofing against the memory bottleneck…

• Small neural networks:

• are more feasible for embedded implementations

• provide freedom from cloud servers (privacy, low latency)

• allow quick over-the-air updates for mobile devices

• train faster in distributed training scenarios (that have a communication bottleneck)

• reduce energy cost
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And the definition of efficiency

Small Neural Networks
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Redefining efficiency

5LSM0 Mod 13: Efficient DL / Small Neural Networks           SPS-VCA / April 2019 SK-PdW38

squeeze (verb): to make an AI system use less resources 

using whatever means necessary

Redefining efficiency
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squeeze (verb): to make an AI system use less resources

using whatever means necessary

Memory 

Footprint and 

Bandwidth

Computational 

Operations

Power

and Energy Time

Redefining efficiency
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squeeze (verb): to make an AI system use less resources

using whatever means necessary

Memory 

Footprint and 

Bandwidth

Computational 

Operations

Power

and Energy Time

New DNN 

Models

Application-specific 

Quantization and Pruning

Superior 

Implementations

Differentiated Data 

and Training 

Strategies



2-4-2019

11

Squeezenet preview
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CNN Top-5 Accuracy

ImageNet

Model 

Parameters

Model 

Size

AlexNet[1] 80.3% 60M 243MB

SqueezeNet[2] 80.3% 1.2M 4.8MB

AlexNet [1]

SqueezeNet [2]

compresses

to 500KB

• Model size: 500x 

compressed

• Could even fit in L2 

cache instead of 

RAM
Finding the right architecture
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Slides based mostly on the paper: 
Small Neural Nets Are Beautiful: Enabling Embedded Systems with Small Deep Neural Network Architectures by F. Iandola and K. 
Keutzer

A quick recap on important CNN terms

• Layer: a function applied to its input. Parameters may or may not be learned by training

• E.g. convolution, activation function, interpolation, pooling, fully connected

• Convolutional filter dimension: filters have a spatial size (width x height) and a depth 
(usually equal to the input channels)

• Activation map: The output tensor of a layer, for CNNs usually: width x height x channels

5LSM0 Mod 13: Efficient DL / Finding the right architecture SPS-VCA / April 2019 SK-PdW43

What can we do to make this network smaller?

Where “smaller” means: takes less memory to save the parameters

(For now, let’s ignore whether or not it will mess up the performance…)

5LSM0 Mod 13: Efficient DL / Finding the right architecture SPS-VCA / April 2019 SK-PdW44

https://www.researchgate.net/publication/300412100_Deep_Learning_for_Image_Retrieval_What_Works_and_What_Doesn%27t/figures?lo=1
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A quick recap on important CNN terms

• Layer: a function applied to its input. Parameters may or may not be learned by training

• E.g. convolution, activation function, interpolation, pooling, fully connected

• Convolutional filter dimension: filters have a spatial size (width x height) and a depth
(usually equal to the input channels)

• Activations: The output tensors of a layer, for CNNs usually: width x height x channels
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Network efficiency boosters
• Layers:

• Replacing fully connected layers with convolution layers

• Convolution filters have a spatial size and a depth

• Depthwise convolutions and shuffle operations

• Filter stacking and spatial kernel reduction

• Activations: width x height x channels

• Evenly-spaced downsampling

• Channel reduction

• Lower-level optimizations

• Deep compression
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Model Compression: 10x

CNN Architecture Search: ≥50x

Can also do both

Images: Prof. Warren Gross (McGill Univ.)

Replacing fully connected layers by convolutions

• Fully connected (FC) layers often contain a LOT of parameters

• Recap exercise: AlexNet and VGG both contain an FC layer of

• Input channels = 4096

• Output channels = 4096

• Width x Height = 1x1

• How many parameters does this layer take? 

• Large channel counts are often needed for good fully-connected layer performance

• Instead just use a few convolutions on fewer channels earlier in the network

• An example from SqueezeNet: How many parameters does a 3x3 convolution have for 512 input channels and 64 

output channels on a 14x14 activation map? 

• Only a few of these layers will already compensate for removing the above FC layer!
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4096x4096 ~ 17M

3x3x512x64 ~ 30k

Changing convolution filters:
Depthwise Convolution

Apparently #channels is a problem. 
So why not just use part of the channels per filter?

• “Depthwise convolution” 
(or “group convolutions” or “filter groups”)

• Adds additional dimension �, where each filter has �/�
channels (�=input channels)

• E.g. if � � 2 half of the filters are applied to channels 0 to �/2-1 

and the other half to �/2 to �

• The parameters saved factor is maximal for � � �

(1 filter per channel, saves a factor � in parameters)
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Problem of depthwise

convolution?

https://towardsdatascience.com/review-xception-with-depthwise-

separable-convolution-better-than-inception-v3-image-dc967dd42568

Example where �=�

https://www.jeremyjordan.me/convnet-architectures/

Depthwise

convolution 

g=2

standard 

convolution 

(g=1)
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• Problem: no information exchange over channels!

• Worst case: entire network of depthwise convolutions. 

This acts like multiple completely independent networks

• Two possible solutions:

• Place normal 1x1 convolution afterwards to combine over channels

 Introduces some parameters again, but good performance

• Add random shuffle operations after every few layers

 0 new learned parameters, but worse performance
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Example where �=�

https://towardsdatascience.com/review-xception-with-depthwise-

separable-convolution-better-than-inception-v3-image-dc967dd42568Changing convolution filters:
Depthwise Convolution

Changing convolution filters:
Stacking smaller filters

What you have already seen: multiple smaller convolutions 
achieve same receptive field as a larger one

• Slightly fewer parameters

• Often even improved performance
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Why does stacking smaller 

filters save parameters?

https://www.jeremyjordan.me/convnet-architectures/

Filter stacking

Changing convolution filters:
Spatial kernel reduction

Better yet: not all convolutions need to be of size �3x3.

• Replace up to factor p of 3x3 convolutions by 1x1 convolutions

• Up to P = 50% of 3x3 convolution filters may be replaced by 1x1 without performance loss!

• Saves memory up to factor 3x3/(3x3*0.5+1x1*0.5) = 1.8
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3x3 Conv
M N

N×(1-p)
3x3 Conv

1x1 Conv

Concatenate
M

N×p

N

What this looks like for N filters (on an input map of M channels)

Managing Activation Map sizes

• Downsampling

• Reduce height and width, but usually increase depth

• No impact on number of parameters for convolution layers

• “Evenly-spaced downsampling” is a good default

• Downsampling too early hurts accuracy

• Downsampling too late increases 

computational cost

5LSM0 Mod 13: Efficient DL / Finding the right architecture

SPS-VCA / April 2019 SK-PdW
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https://www.pyimagesearch.com/2017/03/20/im

agenet-vggnet-resnet-inception-xception-keras/

VGG-16 architecture
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Managing Activation Map sizes

• “Channel reduction” (or “bottleneck layers”)

• Squeeze input into fewer channels using 1x1 convolution

• Then follow with the 3x3 convolution to expand again

• Why does this save parameters?

• Example: 3x3 convolution with 64 in/output channels = 3*3*64*64 = 37k

• Example architecture on the right: 1*1*64*16 + 3*3*16*64 = 10k

• This turns out to have only a minor negative effect on performance
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Input

1x1 Conv

(Squeeze)

3x3 Conv

(Expand)

16

64

64

Output

Simplified bottleneck structure

Remember the memory gain:
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Model Compression: 10xCNN Architecture Search: ≥50x

Images: Prof. Warren Gross (McGill Univ.)

What we have done so far Up next (very briefly)

Model Compression
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Slides based on the paper: 
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding by Han et al.

Deep compression

• What can we do when we have already optimized our architecture?
 Optimize at a lower level

• Some common options

• Weight quantization

• Pruning

• Weight coding

5LSM0 Mod 13: Efficient DL / Model Compression SPS-VCA / April 2019 SK-PdW56
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Weight quantization
• Normally weights are 32-bit floating point numbers

• This is often more accurate than needed

• Smaller precision Reduces both memory AND computation time significantly! 

• 16-bit floating point is an easy 50% reduction

• Taking it to the extreme: binary networks. 32x memory savings, up to 60x faster on IC’s

• Although GPUs do not have the hardware to exploit this…
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1.2367... 0.7623… 0.0285…

2.1209… 0.0184… 0.0395…

0.0195… 0.9664… 0.0218…

1.23 0.762 0.0285

2.12 0.0184 0.0395

0.0195 0.966 0.0218

1 1 0

1 0 0

0 1 0

32-bit floating point

overkill

16-bit floating point

probably good enough

1-bit binary value

loss of performance

For illustration purposes. This isn’t truly what fp16 looks like

Pruning and Huffman coding

• Set convolution weights that are close to zero exactly to zero, and “freeze” them

• Retrain the network with its remaining weights

• Generally this recovers all accuracy of the original network

• In AlexNet and VGG this results in about 90% of the weights being set to 0!

• Huffman coding can efficiently store weights that are non-uniformly distributed
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1.23 0.76 0.02

2.12 0.01 0.03

0.01 0.96 0.02

1.23 0.76 0

2.12 0 0

0 0.96 0

1.19 0.74 0

2.14 0 0

0 1.01 0

3x3 convolution weights Pruned and frozen Retrained

Summary

• Cases

1. Autonomous driving: Showed the importance of real-time computation

2. Healthcare: Reduce complexity by exploiting image acquisition method

• Designing memory-efficient deep convolutional architectures

• Replacing fully connected layers by convolutions

• Depth-wise convolutions

• Stacking filters and spatial kernel reduction

• Evenly spaced down-sampling

• Channel reduction

• Deep compression: compressing convolution weights

• Pruning + Huffman coding

• Weight quantization
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