
Image Segmentation

1. Point and line detection

(a) Create a synthetic image of a line at angles 30
0
, 45

0
, 60

0
 with the y-

axis (see Appendix). Use the line filters (slide 6 of the computer

class presentation on segmentation) on these images, and comment

on the response. Is the behavior different for angles that are not

multiples of 45
0
, and why?

(b) Now make another image of lines at an arbitrary angle. Modify the

method of the Appendix to make lines of various thicknesses (2, 3,

and 4 pixels), and repeat the previous exercise. What do you

observe?

2. Thresholding

Find the optimal threshold for image dodecahedron_example.png

using the optimal thresholding method of Gonzalez. Show the

results of segmenting the image.

Figure 1: Image medtest.png and the regions selected for segmentation.

3. Region growing

(a) Perform region growing segmentation on image medtest.png. By

using different seed points, try to segment the regions shown in Fig-

ure 1.

(b) Calculate and show the histogram of the image. Try to segment the

image (for example, the first region in Figure 1) by thresholdiing.

Why is region growing fundamentally different than thresholding

techniques?

Appendix

Manipulating matrix indices in MATLAB The function find can be used to

access matrix indices that satisfy a certain property, e.g. find(A>10)

returns the indices of all elements that are larger than 10. These indices can

then be used to access elements of the array or in themselves, as the

coordinates of points that satisfy a certain property. This is a very powerful

function in MATLAB and in this example we will show how to use it to

make a synthetic image of a line of a certain slope.

One way of expressing a line is by y = λx + c, where λ = tan(θ) is the

slope of the line. We want to find indices (coordinates) in the matrix A that

satisfy this equation. We start by first expressing all indices of the matrix, by

using find with a property that is always true, e.g.:
A = zeros(100); [j, i] = find(A<Inf);

This will give us all the indices of all the elements of A (we first define A

as an empty image of 100
2
 pixels). Index j is the y-coordinate and i is the x-

coordinate. Now we will enforce the line equation y = λx + c or y –λx - c = 0.

In fact, due to discretization we want to find all points that are within one

pixel of this line, so all pixels from which the line passes. This can be written:

q = find(abs(j-tan(theta*pi/180)*i)<=1);

Note that here we used find to give us one linear index, instead of two x-

and y-coordinates. This is because we can also access matrix elements with

this linear index. We make the line by giving some non-zero value to the

elements of A to which q points:
A(q) = 100;

