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Example: how to recognize handwritten digits 
automatically?
– We want to build a machine with

• image of a digit as input
• identity of the digit (0,…,9) as output

– Why is it difficult?
• Wide variability of handwriting
• Rules or heuristics do not work

Introduction – (1)

(The slides are based on “Pattern recognition and machine learning”, Ch. Bishop)
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Introduction – (2)
Examples of handwritten digits taken from US zip-codes
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Possible solution – machine learning
– Train the algorithm using a training set (digits) and 

target vector (their identities) 
– Test it with a test set (new images of digits)
– Generalization – ability to categorize new examples 

correctly
How can we facilitate pattern recognition?
– Preprocess data in the training set – extract features 

(see module 4)

Introduction – (3)
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Supervised learning
– Training data consists of input vectors and target 

vectors
– Classification - assign each input vector to one of a finite 

number of discrete categories 
Unsupervised learning
– No target vector in the input data
– Clustering – discover groups of similar examples within 

the data

Introduction – (4)
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Supervised learning

Catogarized / labeled data
– Objects in a picture: chair, desk, person,…
– Handwritten digits:
–

Goal: identify the class of a new data point
Statistical modeling and machine learning
Disctinctive properties (features)
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Supervised learning: example (1/5)

Separate lemons from oranges

Use “color” and “shape” as features

Color: orange
Shape: sphere
Ø: ± 8 cm
Weigth: ±0.1 kg

Color: yellow
Shape: elipsoid
Ø: ± 8 cm
Weigth: ±0.1 kg
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Shape

Co
lor

Supervised learning: example (2/5)

Separate lemons from oranges
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Supervised learning: example (3/5)

Separate lemons from oranges

Shape

Co
lor

Oranges

Lemons

Model the given 
- training - data
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Supervised learning: example (4/5)

Separate lemons from oranges

Shape

Co
lor

Oranges

Lemons

New data point

Classifier:
“It’s an orange!”
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Supervised learning: example (5/5)

What if we had chosen the wrong features?

Weight

Di
am

ete
r

Weight

Di
am

ete
r

New data point
???
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Supervised learning

Summary
Choose distinctive features
Make a model based on labeled data (a.k.a. 
supervised learning)
Use the learned model to predict the class of 
new, unseen data points
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Models for classification

Support Vector Machine (SVM)
k Nearest Neighbours (k-NN)
Random Forests
Boosting
Neural Networks
…
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k Nearest Neighbours (1)

Simple concept: look at the class of the k 
closest neighbours in feature space

=
For 3 nearest neighbours:
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k Nearest Neighbours (2)

Simple concept: look at the class of the k 
closest neighbours in feature space

For 7 nearest neighbours:

=
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k Nearest Neighbours (3)

Type of instance based learning
– A.k.a. memory based learning
– New instance compared to training instances that are 

stored in memory: no explicit modelling
– Very memory-heavy classification method!

Two important parameters
– Number of neighbours k
– Distance metric
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k Nearest Neighbours (4)

Distance metrics
– Euclidean distance (L2-norm)

– City block distance (L1-norm)

– Many more options!

Euclidean

City-block
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k Nearest Neighbours
# neigbours & generalization (1)

2 classes in feature space k-NN decision for k=1
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k Nearest Neighbours
# neigbours & generalization (2)

2 classes in feature space k-NN decision for k=3
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k Nearest Neighbours
# neigbours & generalization (3)

2 classes in feature space k-NN decision for k=5
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k Nearest Neighbours
# neigbours & generalization (4)

2 classes in feature space k-NN decision for k=10
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k Nearest Neighbours
# neigbours & generalization (5)

4 classes in feature space k-NN decision for k=1

23

Fac. EE  SPS-VCA
Introduction to Med. Imaging /
5XSA0 / Module 6 Classification 

PdW-SZ-FvdS / 2016

k Nearest Neighbours
# neigbours & generalization (6)

4 classes in feature space k-NN decision for k=3
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k Nearest Neighbours
# neigbours & generalization (7)

4 classes in feature space k-NN decision for k=10
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k Nearest Neighbours
# neigbours & generalization (8)

4 classes in feature space k-NN decision for k=25
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k Nearest Neighbours
Summary
– Instance learning: no explicit modeling
– Memory heavy: all training samples are stored
– Two important parameters

1. Number of nearest neighbours k
2. Distance metric d

– Different parameters choices can lead to different results!
– Higher k leads to better generalization, but also makes 

classification of a new sample a lot slower!
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Support Vector Machine (SVM) (1)

Find a hyperplane that separates the classes 
with a maximum margin

Margin
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Support Vector Machine (SVM) (2)

Based on emperical risk minimization (1960s)
– Non-linearity added in 1992 (Boser, Guyon & Vapnik)
– Soft-margin SVM introduced in 1995 (Cortes & Vapnik)

Has become very popular since then
– Easy to use, a lot of open libraries available
– Fast learning and very fast classification
– Good generalization properties
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How to find the optimal hyperplane?

Support Vector Machine (SVM) (3)

Optimal? No!
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How to find the optimal hyperplane?

www
211 bb

m

Support Vector Machine (SVM) (4)

b
w 0bw x

1bw x

1bw x

m

Width of the margin:

Maximize margin:
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Support Vector Machine (SVM) (5)

We can rewrite this to

Formulate as a Quadratic Programming problem:

Efficient methods available
to solve this problem!
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Support Vector Machine (SVM) (6)

The data is usually not linearly separable…

Introduce slack variables 

Put a cost C on crossing the margin,
so the optimization problem becomes:
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Support Vector Machine (SVM) (7)

A more complex extension: non-linear SVMs
Basic idea: map the data to
a higher-dimensional space, in 
which we can apply a linear SVM
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Support Vector Machine (SVM)
Cost parameter & generalization (1)

Optimal hyperplane for C=100 SVM decision for C=100
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Support Vector Machine (SVM)
Cost parameter & generalization (2)

Optimal hyperplane for C=10 SVM decision for C=10
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Support Vector Machine (SVM)
Cost parameter & generalization (3)

Optimal hyperplane for C=1 SVM decision for C=1
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Support Vector Machine (SVM)
Cost parameter & generalization (4)

Optimal hyperplane for C=0.1 SVM decision for C=0.1
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Support Vector Machine (SVM)
Non-linear SVM examples
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Support Vector Machine (SVM)

Summary
– Fast and efficient method for binary classification
– Splits the classes based on maximizing the margin
– Optimal hyperplane can be computed using 

Quadratic Programming
– Cost-parameter for points crossing the margin
– Non-linear SVM can also handle more complex class 

distributions by mapping the data to another space
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Random Forest (1)

Build decision trees on subsets of the data
Let the trees vote on the class of a new sample

Image from a tutorial of Antonio Criminisi download at: http://research.microsoft.com/en-us/projects/decisionforests/
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Random Forest (2)

Robustness through randomness
– A random subset is used to train each tree
– For training a tree, each node receives a random set of split options

Intrinsically probabilistic output
– Measure of confidence / uncertainty

Automatic feature selection
Naturally multi-class
Runs efficiently – trees can run in parallel

42

Fac. EE  SPS-VCA
Introduction to Med. Imaging /
5XSA0 / Module 6 Classification 

PdW-SZ-FvdS / 2016

Random Forest
Decision trees (1)

A forest consists of trees

Start at the root node
True/false question at each 
split node
Stop when a leaf node is 
reached: prediction 12

0

1 2

3 4 5 6

7 8 9 10 11 13 14

terminal (leaf) node

internal 
(split) node

root node

A general tree structure
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Random Forests
Decision trees (2)

12

0

1 2

3 4 5 6

7 8 9 10 11 13 14

Is it a male?

Does he have 
a beard?

6Does he wear 
glasses?

Example: GUESS WHO*

*Credits to Mark Janse

Jake, Joshua, 
Mike or Justin…
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Random Forests
Decision trees (3)

How to train a decision tree?
– Start with a subset of all the training data at the root node
– From a set of randomly chosen split options , select the 

one that maximizes some split metric (e.g. information gain)
– Repeat this for all the nodes and stop growing a certain 

branch untill one of the following two criteria holds:
• A pre-defined tree depth D is reached (# nodes of a branch)
• All trianing samples in the node are from the same class

Randomized Node 
Optimization (RNO)

Bagging
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Random Forests
How to grow a tree? (1)

Let’s grow a tree with depth D = 2:

Subset      of all availabe dataat   o
Start at the root node
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0
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1

Random Forests
How to grow a tree? (2)

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Option 1 Option 2 Option 3

47

Fac. EE  SPS-VCA
Introduction to Med. Imaging /
5XSA0 / Module 6 Classification 

PdW-SZ-FvdS / 2016

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Random Forests
How to grow a tree? (3)

Option 1 Option 2 Option 3
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Random Forests
How to grow a tree? (4)

Option 1 Option 2 Option 3
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Random Forests
How to grow a tree? (5)

0
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1
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Resulting tree left right

left

right

left

right
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Random Forests
Classify a new data point (1)
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New data point v:

left right

left

right

left

right
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Random Forests
Classify a new data point (2)
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New data point v:

left right
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Random Forests
Classify a new data point (3)
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New data point v:

left right

left

right

left

right
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Random Forests
Classification examples

How to combine tree output?
Tree 1 Tree 2 Tree T

Image from a tutorial of Antonio Criminisi download at: http://research.microsoft.com/en-us/projects/decisionforests/

• Averaging:

54

Fac. EE  SPS-VCA
Introduction to Med. Imaging /
5XSA0 / Module 6 Classification 

PdW-SZ-FvdS / 2016

Random Forests
Classification example (1)

Random forest decision2 classes in feature space

N = 100 trees, max number of nodes = 5, # candidate splits per node = 3 
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Random Forests
Classification example (2)

Random forest decision4 classes in feature space

N = 100 trees, max number of nodes = 4, # candidate splits per node = 3 
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Random Forests
Classification example (3)

Random forest decision4 classes in feature space

N = 100 trees, max number of nodes = 10, # candidate splits per node = 8

57

Fac. EE  SPS-VCA
Introduction to Med. Imaging /
5XSA0 / Module 6 Classification 

PdW-SZ-FvdS / 2016

Random Forests
Summary
– Good generalization due to randomness model

• Bagging
– Each tree is trained on a randomly selected subset of the data

• Randomized Node Optimization (RNO)
– Each node receives a randomly selected subset of all possible split options.

– Multi-class classification with probablistic output
– Suboptimal splits lead to a robust model
– Result depends heavily on the forest parameters
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Performance evaluation
So, now we have model, how good is it?
– We have labeled data (ground truth), so we can validate!

Model validation:
– Separate sets for training and testing the model

• Train the model using the training set
• Use the test set to evaluate the performance

– Compute figures of merit, which indicate the performance
– What is a good performance metric? And how should we 

split the data?
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Performance evaluation
Some popular figures of merit:
– Accuracy (#TP + #TN) / (#TP + #FN +#TN + #FP)

– Sensitivitiy (#TP) / (#TP + #FN) a.k.a. True Positive Rate

– Specificity (#TN) / (#TN + #FP) a.k.a. True Negative Rate

Where 
True Positive (TP): positive sample classified as positive
True Negative (TN): negative sample classified as negative
False Positive (FP): negative sample classified as positive
False Negative (FN): positive sample classified as negative

Number of 
samples
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Performance evaluation

Receiver Operating Characteristic (ROC)
– Sensitivity / specificity give the performance for just one 

possible setting (i.e. decition threshold) of the model
– We can vary this threshold and recompute these 

performance metrics
– This yields a curve of possible combinations of 

sensitivity and specificity, called the ROC curve
– sensitivity specificity and vice versa
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Performance evaluation
How to compute the ROC curve?
– For each sample we have a predicted class and a score
– Sort the samples according to score and move the threshold

Predicted score

Model Prediction

Sensitivitiy = 5 / (5+0) = 1.00
Specificity = 3 / (3+2) = 0.60

PositiveNegative

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1 - Specificity

Se
ns

iti
viy
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How to compute the ROC curve?
– For each sample we have a predicted class and a score
– Sort the samples according to score and move the threshold

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Performance evaluation

Predicted score
Sensitivitiy = 4 / (4+1) = 0.80
Specificity = 3 / (3+2) = 0.60

Model Prediction
PositiveNegative

1 - Specificity

Se
ns

iti
viy
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How to compute the ROC curve?
– For each sample we have a predicted class and a score
– Sort the samples according to score and move the threshold

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Performance evaluation

Predicted score
Sensitivitiy = 4 / (4+1) = 0.80
Specificity = 4 / (4+1) = 0.80

Model Prediction
PositiveNegative

1 - Specificity

Se
ns

iti
viy
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How to compute the ROC curve?
– For each sample we have a predicted class and a score
– Sort the samples according to score and move the threshold

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Performance evaluation

Predicted score
Sensitivitiy = 0 / (0+5) = 0.00
Specificity = 5 / (5+0) = 1.00

Model Prediction

Area Under 
the Curve (AUC) 

AUC = 0.84

1 - Specificity

Se
ns

iti
viy
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Performance evaluation
Large data set: randomly sample half the samples 
for training and half for testing
– Training and testing is time consuming for  large datasets
– The test set is probably a good reflection of the training set

Test data MODEL
Data set

La
be

ls

Training data
Predicted labels

Ground truth labels
Compare

Performance
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Performance evaluation
How should we split the data?
– Different choices might lead to different results…

K-fold cross-validation
– Split the data in K equally sized parts
– Use K-1 parts for training and use the left-out part of the 

data for testing, repeat this for each part and average:

Data set

training testing

av
er

ag
e Performance

K equal parts
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Performance evaluation
Leave-One-Out Cross-Validation
– Leave one sample out of the complete set and use the 

remaining set to train the model
– Test the model on the left-out sample
– Repeat this for all samples.

Best performance indication for small data set
– You want to use as much of the little data you have for 

training the model
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Split in 4
equally-sized
partitions

Performance evaluation
EXAMPLE: 4-fold cross validation (1)
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Performance evaluation
EXAMPLE: 4-fold cross validation (2)

Fold 1

Test set Training set

Fold 1: Accuracy = 0.86
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Fold 1

Fold 2

Test set Training set

Fold 2: Accuracy = 0.86

Performance evaluation
EXAMPLE: 4-fold cross validation (3)
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Fold 1

Fold 2

Fold 3

Test set Training set

Fold 3: Accuracy = 0.84

Performance evaluation
EXAMPLE: 4-fold cross validation (4)
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Fold 1

Fold 2

Fold 3

Fold 4

Test set Training set

Fold 4: Accuracy = 0.88

Performance evaluation
EXAMPLE: 4-fold cross validation (5)
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Fold 1

Fold 2

Fold 3

Fold 4

Test set Training set

Acc. = 0.86

Acc. = 0.86

Acc. = 0.84

Acc. = 0.88

4-fold
cross-validation

accuracy =
0.86 ± 0.016

(mean ± stdev)

Performance evaluation
EXAMPLE: 4-fold cross validation (6)

74

Fac. EE  SPS-VCA
Introduction to Med. Imaging /
5XSA0 / Module 6 Classification 

PdW-SZ-FvdS / 2016

Summary:
– In supervised learning the “ground truth” is available, so 

we can evaluate the prediction performance of the model
– Split the data in two sets

• Training set used for training the model
• Test set to evaluate the prediction performance

– There are different figures of merit for measuring the 
performance: Accuracy, Sensitivity, Specificity, AUC,…

– Use K-fold cross-validation for reliable evaluation

Performance evaluation
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Unsupervised learning

Uncatogarized / unlabeled data
– No target vector in the input data

Goal: discover groups of similar data points
– Clustering

• K-means
• Gaussian mixture models

– Latent variable models
• Principal component analysis
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K-means clustering – (1)

Problem: identify groups (clusters) of data points 
in multidimensional space
– we have a data set                     , 
– variable x - D-dimensional
– goal: partition data into K clusters, value of K is given

Intuitive definition of cluster
– group of data points whose inter-point distances are small

compared with the distances to points outside of the cluster

Nxx ,...,1
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K-means clustering – (2)
Distortion measure

– where                  - binary indicator variable:             if data 
point      is assigned to cluster k and              otherwise,

- data point,
- vector assigned to cluster k (center of cluster)

N

n

K

k
knnk xrJ

1 1

2

1,0nkr 1nkr
nx 0nkr

nx

k

– it is sum of the squares of the distances of each data point 
to its assigned vector
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K-means clustering – (3)
Goal: find values for         and          that minimize J
How can we find the solution?
– Iterative procedure

– each iteration involves two successive steps
– successive optimizations with respect to          and          
– repeat until convergence

– no further change in the assignments
– or until a maximum number of iterations is exceeded

nkr

knkr

k
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K-means clustering – (4)

Description of algorithm
– Choose some initial values for the 
– First phase

– Minimize J with respect to         keeping           fixed
– Second phase

– Minimize J with respect to         keeping           fixed
– Repeat until convergence

nkr

k

k

k nkr
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K-means clustering – (5)

nkr
First phase of algorithm
– Determine          - assign data points to clusters

– Optimize for each n separately

otherwise

xkifr jnj
nk

0

minarg1
2
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K-means clustering – (6)
Second phase of algorithm
– Determine           - compute the cluster means

– J is a quadratic function of         , set its partial derivative 
to zero for finding its minimum

k

k

N

n
knnk

k

xr
d
dJ

1
02

then

n nk

n nnk
k r

xr
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K-means clustering – (7)
Example
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K-means clustering – (8)
Example: minimization of 
cost function J
– Blue points – after assigning 

data points to clusters
– Red points – computing 

cluster means
– Algorithm converges after 

the third step, final cycle 
produces no changes
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What are the limits of this algorithm?

– Algorithm is based on Euclidean distance as the measure of 
dissimilarity between a data point and a prototype vector

Data types are limited (for example, categorical labels 
cannot be used)
determination of the cluster is not robust to outliers

K-means clustering – (9)
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K-means clustering – (10)

K-medoids algorithm
– Generalization of the K-means
– Introduces a more general dissimilarity measure 
– The distortion measure to minimize is then

– But the computation of centers of clusters is more 
complicated

V

N

n

K

k
knnk xrJ

1 1
,~ V
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K-means clustering – (11)

Property of K-means algorithm
– Every data point is assigned uniquely to one of the clusters
– but some data points lie roughly midway between cluster 

centers
– and it is not clear that the hard assignment to the nearest 

cluster is most appropriate

What kind of assignment would be better?
– Adopt a probabilistic approach => soft assignments
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K-means clustering
Image segmentation and compression – (1) 

Some applications of K-means algorithm  
– Image segmentation
– Image compression

– Partition an image into regions each of which
– has a reasonably homogeneous visual appearance or
– corresponds to objects or parts of object

What is the goal of segmentation?  
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K-means clustering
Image segmentation and compression – (2) 

Segmentation
– Each pixel is a separate {R,G,B} 3D data point
– Apply K-means to these points
– Redraw the image replacing each pixel vector with the 

{R,G,B} intensity triplet given by the center         to which 
this pixel is assigned

k
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K-means clustering
Image segmentation and compression – (3) 

Example: for a given value of K, the algorithm represents the 
image using a palette of only K colors

Smaller values of K => higher compression => poorer image quality

90

Fac. EE  SPS-VCA
Introduction to Med. Imaging /
5XSA0 / Module 6 Classification 

PdW-SZ-FvdS / 2016

K-means clustering
Image segmentation and compression – (4) 

Example

K-means is not a sophisticated approach to image segmentation 
because it takes no account of the spatial proximity of different pixels

K=2 K=3 K=10 Original image
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K-means clustering
Image segmentation and compression – (5) 

Application of the K-means to lossy data 
compression
– For each of the N data points, store only the identity k of 

the cluster to which it is assigned
– Store the values of the K cluster centers  

– Requires less data provided that K<N
– Each data point is approximated by its nearest center

It is called vector quantization; cluster centers are called code-
book vectors
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Gaussian distribution 
– has some important analytical properties 
– but suffers from limitations when modeling real data sets

Mixture models
Gaussian mixture – (1)

Single Gaussian distribution fails 
to capture the nature of data

Linear combination of two Gaussians 
fits better
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Mixture models
Gaussian mixture – (2)

Mixture distributions
– linear combinations of basic distributions

To approximate almost any continuous density
– use sufficient number of Gaussians
– adjust means, covariances, coefficients in the linear 

combination

Three Gaussians in blue 
and their sum in red
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Mixture models
Gaussian mixture – (3)

Superposition of K Gaussian densities
K

k
k ,xxp

1
)( N

is called a mixture of Gaussians, where

k kEach Gaussian density has its mean and covariance 

k - mixing coefficients, 10 k

xxx 1
2/12/ 2

1exp1
2

1 T
D,N
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Mixture models
Gaussian mixture – (4)

Gaussian mixture distribution is governed by 
parameters    ,    ,    

How can we find these parameters?
– Possible solution – use maximum likelihood
– Likelihood function expresses how probable the observed 

data is for a given set of parameters

KKK ,...,,,...,,,..., 111
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Mixture models
Gaussian mixture – (5)

Log of the likelihood function:

– No easy analytical solution
– Expectation-maximization (EM) can be used

N

n

K

k
nk ,xp

1 1
ln)(ln NX

Nxx ,...,1X
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Mixture models
Gaussian mixture – (6)

Where are Gaussian mixture models used?
– Data mining
– Pattern recognition 
– Machine learning
– Statistical analysis

How are their parameters determined?
– Maximum likelihood using the EM algorithm
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Principal Component Analysis 
Introduction – (1)

So far – we discussed probabilistic models having 
discrete latent variables, such as mixture of 
Gaussians

Now – explore models in which some or all of the 
latent variables are continuous
– Motivation: property of many data sets – data points can be 

represented by fewer dimensions than those in the original 
data space
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Principal Component Analysis 
Introduction – (2)

Consider an artificial data set 
– constructed by taking images of digits, represented by 

64x64 pixel grey-scale image,  
– and embedding them in larger images of size 100x100 by 

padding with pixels having the value 0
– Location and orientation of digits is varied at random 
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Principal Component Analysis 
Introduction – (3)

Image size: 100x100 = 10000 pixels

Synthetic data set 
– multiple copies of digit images where the digit is randomly 

displaced and rotated within some larger image field
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Principal Component Analysis 
Introduction – (4)

Resulting images
– Represented by a point in the 10000-dimensional data space
– However, across a data set of these images, there are only 

three degrees of freedom of variability
– vertical translation
– horizontal translation
– rotation

– Intrinsic dimensionality is three
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Principal Component Analysis 
Introduction – (5)

Translation and rotation parameters in this example
– latent variables

– because we observe only the images and are not told 
which values of the translation or rotation variables where 
used to create them

– Real digit image data => more degrees of freedom
– Scaling, handwriting variability

– but still smaller amount than the data set dimensionality
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Principal Component Analysis 
Introduction – (6)

Such latent variables can be used for
– data compression
– density modeling 
– data modeling

– select a point according to some latent variable 
distribution

– generate an observed data point by adding noise, drawn 
from some conditional distribution of the data variables 
given the latent variables

104

Fac. EE  SPS-VCA
Introduction to Med. Imaging /
5XSA0 / Module 6 Classification 

PdW-SZ-FvdS / 2016

Principal Component Analysis – (1)

PCA (Principal Component Analysis) 
is widely used for
– dimensionality reduction
– lossy data compression
– feature extraction
– data visualization

Also known as Karhunen-Loève transform
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Principal Component Analysis – (2)
Two definitions of PCA (give rise to the same 
algorithm)
– Orthogonal projection of the data onto a lower dimensional 

space (principal subspace), such that the variance of the 
projected data is maximized

– Linear projection that minimizes the average projection cost, 
defined as the mean squared distance between the data 
points and their projections
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Principal Component Analysis – (3)

PCA seeks a space of lower
dimensionality, denoted by the
magenta line, such that the
orthogonal projection of the data
points (red dots) onto this
subspace maximizes the variance
of the projected points (green dots)
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Principal Component Analysis – (4)

Alternative definition of PCA:
minimize the sum of squares of the 
projection errors (blue lines)
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Principal Component Analysis – (5)

PCA steps
– Evaluate the mean
– and the covariance matrix of the data set
– Find M eigenvectors of the covariance matrix that 

correspond to M largest eigenvalues

What are the eigenvalues and eigenvectors?
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Principal Component Analysis – (6)

Eigenvalue and eigenvector

– Given a linear transformation A, a non-zero vector x is 
an eigenvector of A if it satisfies the eigenvalue
equation Ax = x for some scalar 

– The scalar is called eigenvalue of A corresponding 
to the eigenvector x

(source: http://en.wikipedia.org/wiki/Eigenvector ) 
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Principal Component Analysis – (7)

(source: http://en.wikipedia.org/wiki/Eigenvector ) 

Geometrically the eigenvalue 
equation means that under the 
transformation A eigenvectors do 
not change their direction. 

The eigenvalue is simply the 
amount of "stretch" or "shrink" to 
which a vector is subjected when 
transformed by A. 
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Principal Component Analysis
Applications – (1)

PCA approximation to a data vector xn

– where      – mean of the data set, 
– – eigenvectors of the covariance matrix for the 

original data set {xn}
– M – number of principal components

M
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Principal Component Analysis
Applications – (2)

Example: PCA reconstruction obtained by 
retaining M principal components
– As M increases, the reconstruction becomes more 

accurate
– It becomes perfect when M = D = 28x28 = 784

–
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Principal Component Analysis
Applications – (3)

Example: PCA for 
human face recognition
– Eigenfaces – eigenvectors 

used for human face 
recognition

– Obtained by PCA applied 
to a set of images of 
human faces

(source: http://en.wikipedia.org/wiki/Eigenvector ) 
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Summary and conclusions – (1)
Machine learning
– Supervised learning: labeled data

– Goal: Find a decision boundary between classes
– Classification: K-Nearest Neigbours (kNN), 

Support Vector Machine (SVM), Random Forest
– Unsupervised learning: unlabeled data

– Goal: Discover groups of similar data points
– Clustering: K-means, Mixture Models
– Latent variable models: PCA
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Summary and conclusions – (2)
k-Nearest Neigbhours
– For a new data point: assign most common class 

among k nearest neighbours in feature space
– Instance learning: examples are stored

Support Vector Machine (SVM)
– Optimization problem that finds the hyperplane with 

maximum margin between two classes
– Fast learning and very fast classification
– Memory-efficient: only support vectors are stored
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Summary and conclusions – (3)
Random Forest
– Good generalization due to randomness model
– Multi-class classification with probablistic output

K-means clustering
– can be used for segmentation, unsupervised 

classification
– simple, easy to implement
– assigns one data point to one cluster, no soft 

assignment
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Summary and conclusions – (4)
Mixture of Gaussians
– useful for modeling probability densities, allows 

flexibility necessary for it
PCA
– provides principal components for a data set
– successfully used for dimensionality reduction (see 

eigenfaces)
– assumes high signal-to-noise ratio 

(large variance => important dynamics)
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