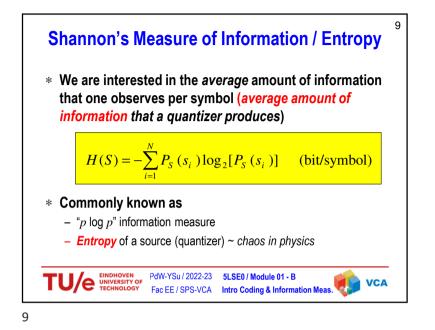
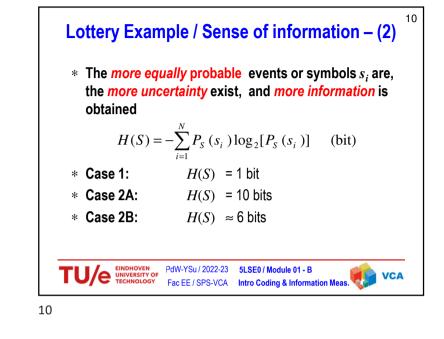
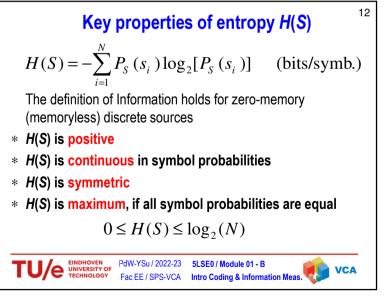


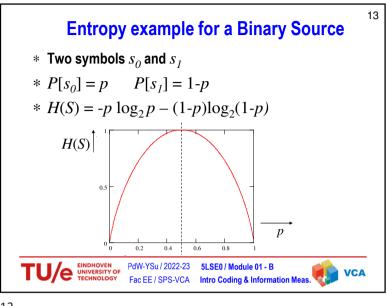
Information and Probability

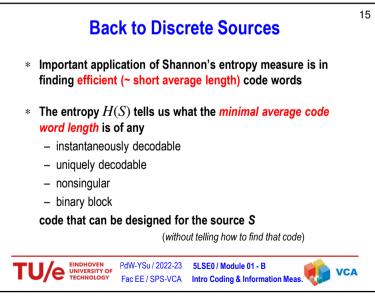

	$I(s_i) = -\log_2[a_i]$	$P_{S}(s_{i})$]	(Self-informa	tion) [bits]
	Case 1: Case 2A:	<i>l</i> (win) <i>l</i> (win)	= 1 bit = 10 bits	
*	Case 2B:	l(I win)	= 1 bit <i>I</i>	(you win) \approx 11 bits
	U/e EINDHOVEN UNIVERSITY OF TECHNOLOGY	PdW-YSu / 2022-23 Fac EE / SPS-VCA	5LSE0 / Module 01 - B Intro Coding & Informa	tion Meas. 💖 VCA

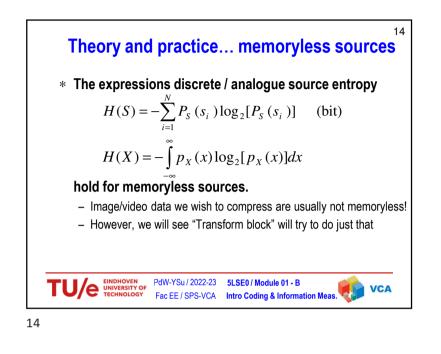
*

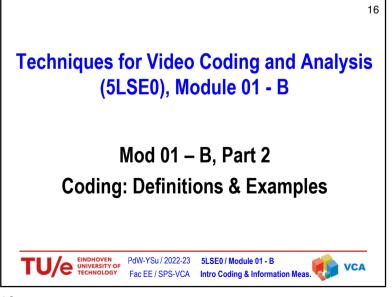

*


8

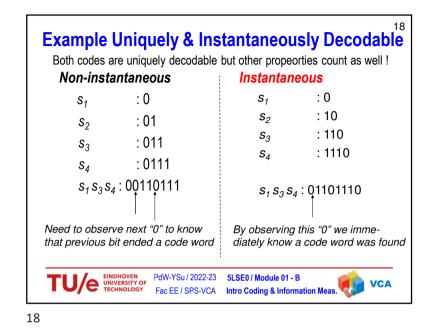

7


s _i	$P_{S}(s_{i})$	$I(s_i)$
0	0.125	3 bits
1	0	
2 3	0.5	1 bits
	0.125	3 bits
4 5	0.125	3 bits
6 7	0 0.125	3 bits
7	0.125	5 1118
H(S) = 2 bits	of information pe	r amplitude





Not uniquely decodable		Uniquely decodable		
\$ ₁	: 0	S ₁	: 0	
S ₂	: 11	s ₂	: 10	
S ₃	: 00	s_3	: 110	
S ₄	: 01	s_4	: 111	
S ₁ S ₃	: 000	•	mbination of bols can be	
S ₃ S ₁	: 000	uniqu	uely decoded (any	
Some concatenations lead to a singular code!		concatenation leads to a nonsingular code)		

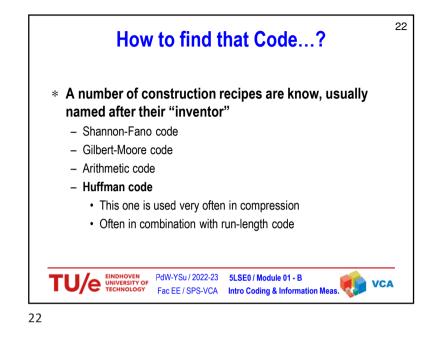

Shannon: Noiseless Source Coding Theorem

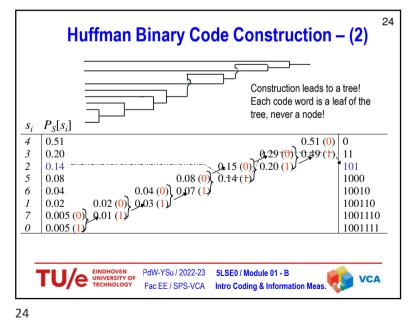
* For a zero-memory discrete source with entropy

$$H(S) = -\sum_{i=1}^{N} P_{S}(s_{i}) \log_{2}[P_{S}(s_{i})] \quad \text{(bit)}$$

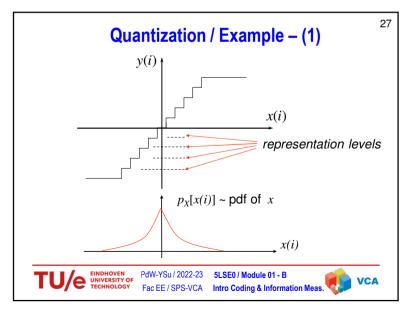
an (instantaneously and uniquely decodable, nonsingular block) binary code exists for which the average code word length L is

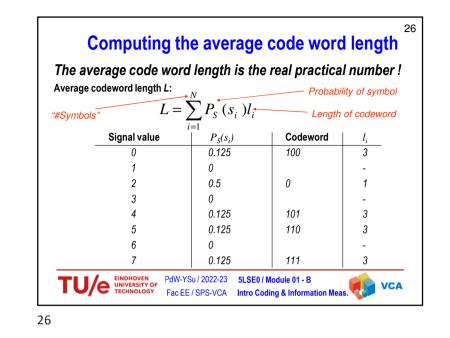
 $H(S) \le L \le H(S) + 1$

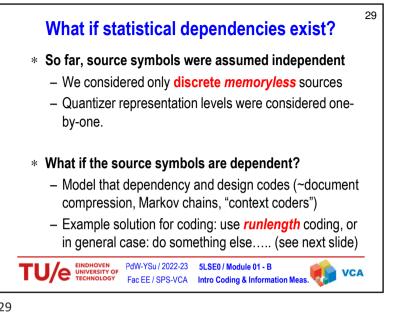


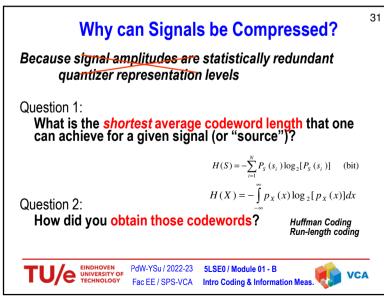

Entropy has even better bound for L ... by creating groups of symbols * If we group M independent symbols together, then $H(S) \le L \le H(S) + \frac{1}{M}$ * In other words, at sufficient expense $(M \rightarrow \infty)$, a code exists of which the average code word length is arbitrarily close to the entropy of the source. **TUCE EXERCISE** PdW-YSu/2022-23 SLSE0/Module 01-B Fac EE/SPS-VCA SLSE0/Module 01-B Intro Coding & Information Meas.

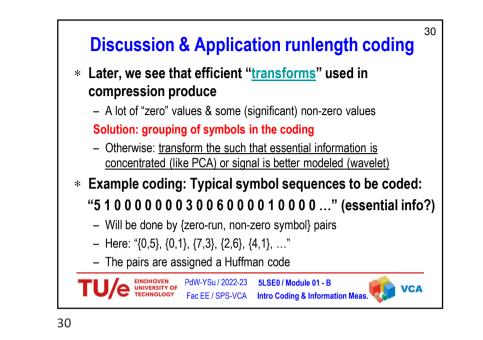
Exam	ple – 8-Message source
s _i	$P_{S}(s_{i})$
0	0.005
1	0.02
2	0.14
3	0.20
4	0.51
5	0.08
6	0.04
7	0.005
	coding requires 3 bits/symbol
* <i>H</i> (<i>S</i>) = 2.024 b	<pre>its/symbol (creates clear reduction!)</pre>
TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY	PdW-YSu / 2022-23 5LSE0 / Module 01 - B Fac EE / SPS-VCA Intro Coding & Information Meas.


Huffman Binary Code Construction – (1)


- 1. Rank the symbols with decreasing probability
- 2. Join the two least probable symbols and add their probabilities to form a new "joined symbol"
- 3. Re-arrange new set of probabilities in decreasing order
- 4. Repeat Step 2 and 3 until two probabilities remain
- 5. Assign a bit "0" to one of the probabilities, and a bit "1" to the other
- 6. Go backwards and add one bit at each place where two symbols were joined
- 7. Create code words following the path to that symbol from right to left




s _i	$P_{S}(s_{i})$	Codeword
0	0.005	1001111
1	0.02	100110
2	0.14	101
3	0.20	11
4	0.51	0
5	0.08	1000
6	0.04	10010
7	0.005	1001110
Simple binary coding H(S) = 2.024 bits/sym $L_{av} = 2.204$ bits/sym	ibol	ymbol closely the bound: <mark>Entrop</mark>
-	Su / 2022-23 5LSE0 / M	lodule 01 - B



		Repres. Level	Probability	Codewords (positive)	Codewords (negative)	
1		±9.247	0.00007	00010101101010	00010101101011	
2		±6.875	0.00031	000101011011	0001010110100	
3		±5.519	0.00077	0001010111	00010101100	
4		±4/562	0.00152	0001010000	0001010001	
5		±3.823	0.00269	000101001	000101010	
6		±3.217	0.00444	00011010	00011011	
7		±2.703	0.00699	1011010	1011011	
8		±2.253	0.01068	0001011	0001100	
9		±1.855	0.01590	000111	101100	
10)	±1.497	0.02318	10111	000100	
11		±1.175	0.03316	01000	01001	
12		±0.884	0.04658	1100	1101	
13	3	±0.622	0.06441	0101	1010	
14	· .	±0.388	0.08797	111	0000	
15	· .	±0.180	0.11987	011	100	
16	5	0.000	0.16292	001		
*	* Simple binary coding requires 5 bits/repr.level					
*	* H(S) = 3.876 bits/repr.level					
*	L	<i>av</i> = 3.91	2 bits/re	epr.level		
		EINDHOVEN	PdW-YSu/2	022-23 5I SEO / M	odule 01 - B	

