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Questions to be Answered

Three questions play a central role:

1. Why can signals be compressed?

2. How much can signals be compressed?

3. Which signal processing / information theory 

algorithms are most efficient in reaching the 

maximum compression?

(For lossless and lossy compression)
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Why can Signals be Compressed? – (1)

Because signal amplitudes are mutually dependent

Question 1:

What is the best possible exploitation of the  correlation 

(dependencies) in natural signals?
(Rate-Distortion Theory)

Question 2:

How do we implement a system that exploits the 

correlation in natural signals? 
(Compression algorithms: - DPCM

- Subband/wavelet
- Transform/DCT
- Motion compensation)
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Why can Signals be Compressed? – (2)

Because signal amplitudes are statistically redundant

Question 1:

What is the shortest average codeword length that one 

can achieve for a given signal (or “source”)?
(Shannon Information Theory)

Question 2:

How did you obtain those codewords?
(Construction Recipes)
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Relevance of Coding Subject /
all corner stones can be re-used…

– Theory is more generally applicable

– As a start, keep in mind that we are discussing how to convert the 

output of a quantizer to codewords
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Example of information: Lottery

What does “Statistical Redundancy” mean?

∗ Case 1: Two people put €10 each on the table. A fair coin is flipped, 

the winner takes all

∗ Case 2A: 1024 people put €10 each on the table. A number between 1 

and 1024 is drawn randomly, the winner takes all.

∗ Case 2B: 1024 people put €10 each on the table, a fair coin is flipped 

• If head, I take all money If tail, I loose. Then a number between 1 and 1023 is 

drawn randomly, the winner takes all

∗ Which case is most surprising ~ has most information?

∗ Can we quantify the term information?
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Information and Probability

∗ We want to quantify the concept of Information

Foundation in 1948 by Claude Shannon, (“Mathematical Theory”,BSTJ)

∗ The less likely an event or symbol s
i
is, the more 

uncertainty exists, and the more information one obtains 

if this event/symbol occurs

∗ Case 1: I(win) = 1 bit

∗ Case 2A: I(win) = 10 bits

∗ Case 2B: I(I win) = 1 bit     I     (you win) ≈ 11 bits

I(si) = -log2[PS(si)]         (Self-information) [bits]
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Shannon’s Measure of Information / Entropy

∗ We are interested in the average amount of information 

that one observes per symbol (average amount of 

information that a quantizer produces)

∗ Commonly known as 

– “p log p” information measure

– Entropy of a source (quantizer) ~ chaos in physics
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Lottery Example / Sense of information – (2)

∗ The more equally probable events or symbols s
i
are, 

the more uncertainty exist,  and more information is 

obtained

∗ Case 1: H(S) = 1 bit

∗ Case 2A: H(S) = 10 bits

∗ Case 2B: H(S) ≈ 6 bits
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Another Example / 8-Message source 

si PS(si) I(si)

0 0.125 3 bits
1 0
2 0.5 1 bits
3 0
4 0.125 3 bits 
5 0.125 3 bits
6 0
7 0.125 3 bits

H(S) = 2 bits of information per amplitude
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Key properties of entropy H(S)

The definition of Information holds for zero-memory 

(memoryless) discrete sources

∗ H(S) is positive

∗ H(S) is continuous in symbol probabilities

∗ H(S) is symmetric

∗ H(S) is maximum, if all symbol probabilities are equal
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Entropy example for a Binary Source 

∗ Two symbols s0 and s1

∗ P[s0] = p      P[s1] = 1-p

∗ H(S) = -p log2 p – (1-p)log2(1-p)

0 0.2 0.4 0.6 0.8 1
0

0.5
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H(S)
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Theory and practice… memoryless sources

∗ The expressions discrete / analogue source entropy

hold for memoryless sources. 

– Image/video data we wish to compress are usually not memoryless!

– However, we will see “Transform block” will try to do just that
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Back to Discrete Sources

∗ Important application of Shannon’s entropy measure is in 

finding efficient (~ short average length) code words 

∗ The entropy H(S) tells us what the minimal average code 

word length is of any

– instantaneously decodable

– uniquely decodable

– nonsingular

– binary block

code that can be designed for the source S

(without telling how to find that code)
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Techniques for Video Coding and Analysis

(5LSE0), Module 01 - B

Mod 01 – B, Part 2

Coding: Definitions & Examples
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Example Uniquely Decodable

Not uniquely decodable

s1 : 0

s2 : 11

s3 : 00

s4 : 01

s1 s3 : 000

s3 s1 : 000

Some concatenations lead 

to a singular code!

Back to terms

Uniquely decodable

s1 : 0

s2 : 10

s3 : 110

s4 : 111

Any combination of 

symbols can be 

uniquely decoded (any 

concatenation leads to 

a nonsingular code)
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Example Uniquely & Instantaneously Decodable

Non-instantaneous

s1 : 0

s2 : 01

s3 : 011

s4 : 0111

s1 s3 s4 : 00110111

Instantaneous

s1 : 0

s2 : 10

s3 : 110

s4 : 1110

s1 s3 s4 : 01101110

Need to observe next “0” to know 
that previous bit ended a code word

By observing this “0” we imme-
diately know a code word was found

Both codes are uniquely decodable but other propeorties count as well ! 
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Shannon: Noiseless Source Coding Theorem

∗ For a zero-memory discrete source with entropy

an (instantaneously and uniquely decodable, 

nonsingular block) binary code exists for which the 

average code word length L is
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Entropy has even better bound for L …

by creating groups of symbols

∗ If we group M independent symbols together, then

∗ In other words, at sufficient expense (M→∞→∞→∞→∞), a code 

exists of which the average code word length is 

arbitrarily close to the entropy of the source.

M
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Example – 8-Message source 
si PS(si)

0 0.005

1 0.02

2 0.14

3 0.20

4 0.51

5 0.08

6 0.04

7 0.005

∗ Simple binary coding requires 3 bits/symbol

∗ H(S) = 2.024 bits/symbol (creates clear reduction!)
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How to find that Code…?

∗ A number of construction recipes are know, usually 

named after their “inventor”

– Shannon-Fano code

– Gilbert-Moore code

– Arithmetic code

– Huffman code 

• This one is used very often in compression

• Often in combination with run-length code

23

Fac EE / SPS-VCA

PdW-YSu / 2022-23 5LSE0 / Module 01 - B

Intro Coding & Information Meas.

Huffman Binary Code Construction – (1)

1. Rank the symbols with decreasing probability

2. Join the two least probable symbols and add their 

probabilities to form a new “joined symbol”

3. Re-arrange new set of probabilities in decreasing order

4. Repeat Step 2 and 3 until two probabilities remain

5. Assign a bit “0” to one of the probabilities, and a bit “1” to 

the other

6. Go backwards and add one bit at each place where two 

symbols were joined

7. Create code words following the path to that symbol from 

right to left
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Huffman Binary Code Construction – (2)

4 0.51 0.51 (0) 0

3 0.20 0.29 (0) 0.49 (1) 11

2 0.14 0.15 (0) 0.20 (1) 101

5 0.08 0.08 (0) 0.14 (1) 1000

6 0.04 0.04 (0) 0.07 (1) 10010

1 0.02 0.02 (0) 0.03 (1) 100110

7 0.005 (0) 0.01 (1) 1001110

0 0.005 (1) 1001111

si PS[si]

Construction leads to a tree! 

Each code word is a leaf of the 

tree, never a node!
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Huffman Binary Code Construction – (3)
si PS(si) Codeword

0 0.005 1001111

1 0.02 100110

2 0.14 101

3 0.20 11

4 0.51 0

5 0.08 1000

6 0.04 10010 

7 0.005 1001110

∗ Simple binary coding requires 3 bits/symbol

∗ H(S) = 2.024 bits/symbol

∗ Lav = 2.204 bits/symbol (we approach closely the bound: … Entropy)
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Computing the average code word length

The average code word length is the real practical number !
Average codeword length L:

Signal value                     PS(si) Codeword      li

0 0.125 100        3

1 0 -

2 0.5 0 1

3 0 -

4 0.125 101 3

5 0.125 110 3

6 0 -

7 0.125 111 3


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Probability of symbol

Length of codeword
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Quantization / Example – (1)

)(ix

)(iy

representation levels

x(i)

pX[x(i)] ~ pdf of x
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∗ Simple binary coding requires 5 bits/repr.level

∗ H(S) = 3.876 bits/repr.level

∗ Lav = 3.912 bits/repr.level

Repres. Level Probability Codewords (positive) Codewords (negative)

1 ±9.247 0.00007 00010101101010 00010101101011

2 ±6.875 0.00031 000101011011 0001010110100

3 ±5.519 0.00077 0001010111 00010101100

4 ±4/562 0.00152 0001010000 0001010001
5 ±3.823 0.00269 000101001 000101010

6 ±3.217 0.00444 00011010 00011011

7 ±2.703 0.00699 1011010 1011011

8 ±2.253 0.01068 0001011 0001100
9 ±1.855 0.01590 000111 101100

10 ±1.497 0.02318 10111 000100

11 ±1.175 0.03316 01000 01001
12 ±0.884 0.04658 1100 1101

13 ±0.622 0.06441 0101 1010

14 ±0.388 0.08797 111 0000

15 ±0.180 0.11987 011 100
16 0.000 0.16292 001

1

Quantization / Example – (2)
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What if statistical dependencies exist? 

∗ So far, source symbols were assumed independent

– We considered only discrete memoryless sources

– Quantizer representation levels were considered one-

by-one.

∗ What if the source symbols are dependent?

– Model that dependency and design codes (~document 

compression, Markov chains, “context coders”)

– Example solution for coding: use runlength coding, or 

in general case: do something else….. (see next slide)
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Discussion & Application runlength coding

∗ Later, we see that efficient “transforms” used in 

compression produce

– A lot of “zero” values & some (significant) non-zero values

Solution: grouping of symbols in the coding

– Otherwise: transform the such that essential information is 

concentrated (like PCA) or signal is better modeled (wavelet)

∗ Example coding: Typical symbol sequences to be coded:

“5 1 0 0 0 0 0 0 0 3 0 0 6 0 0 0 0 1 0 0 0 0 …” (essential info?)

– Will be done by {zero-run, non-zero symbol} pairs

– Here: “{0,5}, {0,1}, {7,3}, {2,6}, {4,1}, …”

– The pairs are assigned a Huffman code
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Why can Signals be Compressed?

Because signal amplitudes are statistically redundant
quantizer representation levels

Question 1:
What is the shortest average codeword length that one 
can achieve for a given signal (or “source”)?

Question 2:
How did you obtain those codewords?         Huffman Coding

Run-length coding
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